dc.contributor.author |
Andriotaki, PN |
en |
dc.date.accessioned |
2014-03-01T01:22:59Z |
|
dc.date.available |
2014-03-01T01:22:59Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0167-8442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16751 |
|
dc.subject |
Exact solutions |
en |
dc.subject |
Nonlinear ordinary differential equations |
en |
dc.subject |
Nonlinear surface seismic waves |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Crack propagation |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Seismic waves |
en |
dc.subject.other |
Surface waves |
en |
dc.subject.other |
Nonlinear mechanics |
en |
dc.subject.other |
Nonlinear seismic waves (NLSW) |
en |
dc.subject.other |
Ordinary differential equations (ODE) |
en |
dc.subject.other |
Wave motions |
en |
dc.subject.other |
Wave propagation |
en |
dc.subject.other |
seismic wave |
en |
dc.subject.other |
wave propagation |
en |
dc.title |
Propagation of surface (seismic) waves: Ordinary differential equations with strongly nonlinear damping |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.tafmec.2005.03.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.tafmec.2005.03.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Second-order ordinary differential equations (ODEs) with strongly nonlinear damping (cubic nonlinearities) govern surface wave motions that entail nonlinear surface seismic motions. They apply to dynamic crack propagation and nonlinear oscillation problems in physics and nonlinear mechanics. It is shown that the nonlinear surface seismic wave equation (Rayleigh equation) admits several functional transformations and it is possible to reduce it to an equivalent first-order Abel ODE of the second kind in normal form. Based on a recently developed methodology concerning the construction of exact analytic solutions for the type of Abel equations under consideration, exact solutions are obtained for the nonlinear seismic wave (NLSW) equation for initial conditions of the physical problem. The method employed is general and can be applied to a large class of relevant ODEs in mathematical physics and nonlinear mechanics. (c) 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Theoretical and Applied Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/j.tafmec.2005.03.002 |
en |
dc.identifier.isi |
ISI:000230742900002 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
308 |
en |
dc.identifier.epage |
323 |
en |