dc.contributor.author |
Tsekeris, T |
en |
dc.contributor.author |
Stathopoulos, A |
en |
dc.date.accessioned |
2014-03-01T01:23:00Z |
|
dc.date.available |
2014-03-01T01:23:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0733-947X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16759 |
|
dc.subject |
Intelligent transportation systems |
en |
dc.subject |
Simulation models |
en |
dc.subject |
Traffic analysis |
en |
dc.subject |
Traffic assignment |
en |
dc.subject |
Transportation networks |
en |
dc.subject |
Travel demand |
en |
dc.subject |
Urban transportation |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Monitoring |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Urban planning |
en |
dc.subject.other |
Matrix split sequence |
en |
dc.subject.other |
Quasidynamic network assignments (DNA) |
en |
dc.subject.other |
Real time guidance systems |
en |
dc.subject.other |
Urban networks |
en |
dc.subject.other |
Transportation routes |
en |
dc.subject.other |
urban transport |
en |
dc.title |
Quasidynamic network assignment procedure with transient demand matrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-947X(2005)131:2(89) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-947X(2005)131:2(89) |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This paper presents a simulation-based quasidynamic network assignment (DNA) procedure that facilitates the representation of changes in route choice behavior of users traveling on extended urban networks. The procedure is based on the building of regularly updated transient demand matrices. Its potential to facilitate on-line traffic monitoring of the effects of implementing real-time guidance systems is investigated both theoretically and empirically through testing in real urban network conditions. The DNA model performance is assessed with respect to the assumed origin-destination (O-D) matrix split sequence, the temporal length of updating periods, in which the total assignment period is divided, and the total size of O-D demand. The simulation results indicate the beneficial impact of dynamic optimal path information provision using the DNA model on network performance. The benefits of information updating frequency, ranging from 30 to 5 min, are found to increase with respect to the growing levels of network congestion. © ASCE. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Transportation Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-947X(2005)131:2(89) |
en |
dc.identifier.isi |
ISI:000226430800003 |
en |
dc.identifier.volume |
131 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
89 |
en |
dc.identifier.epage |
100 |
en |