dc.contributor.author |
Keramitsoglou, I |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.contributor.author |
Sifakis, N |
en |
dc.date.accessioned |
2014-03-01T01:23:00Z |
|
dc.date.available |
2014-03-01T01:23:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0143-1161 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16760 |
|
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Ecology |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Spectrum analysis |
en |
dc.subject.other |
Fuzzy partition |
en |
dc.subject.other |
Neural network complexities |
en |
dc.subject.other |
Satellite images |
en |
dc.subject.other |
Texture analysis |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
lake ecosystem |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite imagery |
en |
dc.subject.other |
spatial resolution |
en |
dc.subject.other |
Eastern Hemisphere |
en |
dc.subject.other |
Eurasia |
en |
dc.subject.other |
Europe |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Southern Europe |
en |
dc.subject.other |
World |
en |
dc.title |
Radial basis function neural networks classification using very high spatial resolution satellite imagery: An application to the habitat area of Lake Kerkini (Greece) |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/01431160512331326594 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01431160512331326594 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This study investigates the potential of applying the radial basis function (RBF) neural network architecture for the classification of multispectral very high spatial resolution satellite images into 13 classes of various scales. For the development of the RBF classifiers, the innovative fuzzy means training algorithm is utilized, which is based on a fuzzy partition of the input space. The method requires only a short amount of time to select both the structure and the parameters of the RBF classifier. The new technique was applied to the area of Lake Kerkini, which is a wetland of great ecological value, located in northern Greece. Eleven experiments were carried out in total in order to investigate the performance of the classifier using different input parameters (spectral and textural) as well as different window sizes and neural network complexities. For comparison purposes the same satellite scene was classified using the maximum likelihood (MLH) classification with the same set of training samples. Overall, the neural network classifiers outperformed the MLH classification by 10-17%, reaching a maximum overall accuracy of 78%. Analysis showed that the selection of input parameters is vital for the success of the classifiers. On the other hand, the incorporation of textural analysis and/or modification of the window size do not affect the performance substantially. © 2005 Taylor & Francis Group Ltd. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Remote Sensing |
en |
dc.identifier.doi |
10.1080/01431160512331326594 |
en |
dc.identifier.isi |
ISI:000229988900006 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1861 |
en |
dc.identifier.epage |
1880 |
en |