dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:23:00Z |
|
dc.date.available |
2014-03-01T01:23:00Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0002-9947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16763 |
|
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PARTITION THEOREM |
en |
dc.subject.other |
INFINITE SUBTREES |
en |
dc.subject.other |
SETS |
en |
dc.subject.other |
COMBINATORICS |
en |
dc.subject.other |
PROOF |
en |
dc.title |
Ramsey families of subtrees of the dyadic tree |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9947-05-03968-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9947-05-03968-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We show that for every rooted, finitely branching, pruned tree T of height ω there exists a family ℱ which consists of order isomorphic to T subtrees of the dyadic tree C = {0,1}<N with the following properties: (i) the family ℱ is a Gδ subset of 2 C; (ii) every perfect subtree of C contains a member of ℱ; (iii) if K is an analytic subset of ℱ, then for every perfect subtree S of C there exists a perfect subtree S' of S such that the set {A ∈ ℱ : A ⊆ S'} either is contained in or is disjoint from K. © 2005 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Transactions of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9947-05-03968-1 |
en |
dc.identifier.isi |
ISI:000230719300002 |
en |
dc.identifier.volume |
357 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
3865 |
en |
dc.identifier.epage |
3886 |
en |