dc.contributor.author | Afrati, F | en |
dc.contributor.author | Aslanidis, T | en |
dc.contributor.author | Bampis, E | en |
dc.contributor.author | Milis, I | en |
dc.date.accessioned | 2014-03-01T01:23:02Z | |
dc.date.available | 2014-03-01T01:23:02Z | |
dc.date.issued | 2005 | en |
dc.identifier.issn | 13826905 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/16782 | |
dc.subject | Approximation algorithms | en |
dc.subject | Scheduling | en |
dc.subject | Set-up delays | en |
dc.subject | Switching networks | en |
dc.subject.other | Algorithms | en |
dc.subject.other | Approximation theory | en |
dc.subject.other | Computational complexity | en |
dc.subject.other | Polynomials | en |
dc.subject.other | Problem solving | en |
dc.subject.other | Scheduling | en |
dc.subject.other | Switching networks | en |
dc.subject.other | Approximation algorithm | en |
dc.subject.other | Bipartite graph | en |
dc.subject.other | NP-hard | en |
dc.subject.other | Set-up delays | en |
dc.subject.other | Combinatorial mathematics | en |
dc.title | Scheduling in switching networks with set-up delays | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/s10878-005-5483-4 | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/s10878-005-5483-4 | en |
heal.publicationDate | 2005 | en |
heal.abstract | We consider the (preemptive bipartite scheduling problem PBS) (Crescenzi et al., ""On approximating a scheduling problem,"" Journal of Combinatorial Optimization, vol. 5, pp. 287-297, 2001) arising in switching communication systems, where each input and output port can be involved in at most one communication at the same time. Given a set of communication tasks to be communicated from the transmitters to the receivers of such a system, we aim to find a schedule minimizing the overall transmission time. To achieve this, we allow the preemption of communication tasks. However, in practice preemption comes with a cost, d, and this renders the problem NP-hard (Gopal et al., ""An optimal switching algorithm for multibeam satellite systems with variable bandwidth beams,"" IEEE Trans. Commun., vol.30, pp. 2475-2481, 1982). In this paper, we present a 2 - 1/d+1 approximation algorithm, which is the first one for the PBS problem with approximation ratio strictly less than two. Furthermore, we propose a simple optimal polynomial time algorithm for a subclass of instances of the PBS problem. © 2005 Springer Science + Business Media, Inc. | en |
heal.journalName | Journal of Combinatorial Optimization | en |
dc.identifier.doi | 10.1007/s10878-005-5483-4 | en |
dc.identifier.volume | 9 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 49 | en |
dc.identifier.epage | 57 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |