dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:23:03Z |
|
dc.date.available |
2014-03-01T01:23:03Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
1439-8516 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16787 |
|
dc.subject |
Coercive operator |
en |
dc.subject |
Compact embedding |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
Extremal solutions |
en |
dc.subject |
Integration by parts formula |
en |
dc.subject |
Lpseudomonotonicity |
en |
dc.subject |
Pseudomonotone and demicontinuous operator |
en |
dc.subject |
Solution set |
en |
dc.subject |
Upper semicontinuous and lower semicontinuous multifunction |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
GENERAL BANACH-SPACES |
en |
dc.subject.other |
DIFFERENTIAL-INCLUSIONS |
en |
dc.subject.other |
NONMONOTONE |
en |
dc.subject.other |
LINES |
en |
dc.title |
Second order nonlinear evolution inclusions I: Existence and relaxation results |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10114-004-0508-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10114-004-0508-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C1(T,H). Also we examine the lsc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C1(T,H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed. © Springer-Verlag 2005. |
en |
heal.publisher |
SPRINGER HEIDELBERG |
en |
heal.journalName |
Acta Mathematica Sinica, English Series |
en |
dc.identifier.doi |
10.1007/s10114-004-0508-y |
en |
dc.identifier.isi |
ISI:000232720700002 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
977 |
en |
dc.identifier.epage |
996 |
en |