HEAL DSpace

Soil image segmentation and texture analysis: A computer vision approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sofou, A en
dc.contributor.author Evangelopoulos, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:23:05Z
dc.date.available 2014-03-01T01:23:05Z
dc.date.issued 2005 en
dc.identifier.issn 1545-598X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16805
dc.subject Computer vision en
dc.subject Image segmentation en
dc.subject Remote sensing en
dc.subject Soil analysis en
dc.subject Texture analysis en
dc.subject.classification Geochemistry & Geophysics en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Remote Sensing en
dc.subject.other Feature measurements en
dc.subject.other Soil analysis en
dc.subject.other Soil morphology en
dc.subject.other Texture analysis en
dc.subject.other Computation theory en
dc.subject.other Computer vision en
dc.subject.other Ecology en
dc.subject.other Image processing en
dc.subject.other Image segmentation en
dc.subject.other Information analysis en
dc.subject.other Morphology en
dc.subject.other Soil mechanics en
dc.title Soil image segmentation and texture analysis: A computer vision approach en
heal.type journalArticle en
heal.identifier.primary 10.1109/LGRS.2005.851752 en
heal.identifier.secondary http://dx.doi.org/10.1109/LGRS.2005.851752 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Automated processing of digitized soilsection images reveals elements of soil structure and draws primary estimates of bioecological importance, like ground fertility and changes in terrestrial ecosystems. We examine a sophisticated integration of some modern methods from computer vision for image feature extraction, texture analysis, and segmentation into homogeneous regions, relevant to soil micromorphology. First, we propose the use of a morphological partial differential equation-based segmentation scheme based on seeded region-growing and level curve evolution with speed depending on image contrast. Second, we analyze surface texture information by modeling image variations as local modulation components and using multifrequency filtering and instantaneous nonlinear energy-tracking operators to estimate spatial modulation energy. By separately exploiting contrast and texture information, through multiscale image smoothing, we propose a joint image segmentation method for further interpretation of soil images and feature measurements. Our experimental results in images digitized under different specifications and scales demonstrate the efficacy of our proposed computational methods for soil structure analysis. We also briefly demonstrate their applicability to remote sensing images. © 2005 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Geoscience and Remote Sensing Letters en
dc.identifier.doi 10.1109/LGRS.2005.851752 en
dc.identifier.isi ISI:000232897100005 en
dc.identifier.volume 2 en
dc.identifier.issue 4 en
dc.identifier.spage 394 en
dc.identifier.epage 398 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής