dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:23:05Z |
|
dc.date.available |
2014-03-01T01:23:05Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16807 |
|
dc.subject |
Double resonance |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Minimax principle |
en |
dc.subject |
Non-smooth critical-point theory |
en |
dc.subject |
Non-smooth PS-condition |
en |
dc.subject |
p-laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
DIFFERENTIAL-EQUATIONS |
en |
dc.subject.other |
NONRESONANCE |
en |
dc.title |
Solutions for doubly resonant nonlinear non-smooth periodic problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0013091504000264 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091504000264 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We study a nonlinear second-order periodic problem driven by the scalar p-Laplacian with a non-smooth potential. We consider the so-called doubly resonant situation allowing complete interaction (resonance) with both ends of the spectral interval. Using variational methods based on the non-smooth critical-point theory for locally Lipschitz functions and an abstract minimax principle concerning linking sets we establish the solvability of the problem. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S0013091504000264 |
en |
dc.identifier.isi |
ISI:000227426400012 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
199 |
en |
dc.identifier.epage |
211 |
en |