dc.contributor.author |
Tarantilis, CD |
en |
dc.contributor.author |
Ioannou, G |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.contributor.author |
Prastacos, GP |
en |
dc.date.accessioned |
2014-03-01T01:23:05Z |
|
dc.date.available |
2014-03-01T01:23:05Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0160-5682 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16811 |
|
dc.subject |
Distribution |
en |
dc.subject |
Logistics |
en |
dc.subject |
Transportation |
en |
dc.subject |
Vehicle routeing |
en |
dc.subject.classification |
Management |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Customer satisfaction |
en |
dc.subject.other |
Logistics |
en |
dc.subject.other |
Marketing |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Routers |
en |
dc.subject.other |
Transportation |
en |
dc.subject.other |
Customer services |
en |
dc.subject.other |
Distribution |
en |
dc.subject.other |
Vehicle routing |
en |
dc.subject.other |
Vehicle routing problems (VRP) |
en |
dc.subject.other |
Vehicles |
en |
dc.title |
Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1057/palgrave.jors.2601848 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1057/palgrave.jors.2601848 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper, we consider the open vehicle routeing problem (OVRP), in which routes are not sequences of locations starting and ending at the depot but open paths. The problem is of particular importance for planning fleets of hired vehicles, a common practice in the distribution and service industry. In such cases, the travelling cost is a function of the vehicle open paths. To solve the problem, we employ a single-parameter metaheuristic method that exploits a list of threshold values to guide intelligently an advanced local search. Computational results on a set of benchmark problems show that the proposed method consistently outperforms previous approaches for the OVRP. A real-world example demonstrates the applicability of the method in practice, demonstrating that the approach can be used to solve actual problems of routing large vehicle fleets. © 2005 Operational Research Society Ltd. All rights reserved. |
en |
heal.publisher |
PALGRAVE PUBLISHERS LTD |
en |
heal.journalName |
Journal of the Operational Research Society |
en |
dc.identifier.doi |
10.1057/palgrave.jors.2601848 |
en |
dc.identifier.isi |
ISI:000228357400012 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
588 |
en |
dc.identifier.epage |
596 |
en |