dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Markolefas, S |
en |
dc.date.accessioned |
2014-03-01T01:23:06Z |
|
dc.date.available |
2014-03-01T01:23:06Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
01689274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16812 |
|
dc.subject |
A priori error estimates |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Fractional order norms |
en |
dc.subject |
h-extension |
en |
dc.subject.other |
A priori error estimates |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
Fractional order norms |
en |
dc.subject.other |
H-extension |
en |
dc.subject.other |
Error detection |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Hydrogen |
en |
dc.title |
Some a priori error estimates with respect to Hθ norms, 0<θ<1, for the h-extension of the finite element method in two dimensions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apnum.2004.07.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apnum.2004.07.005 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The error with respect to lower (fractional) order norms, ∥*∥θ, 0<θ<1, for the h-extension of the finite element method in 2-D, is studied and some new improved error estimates are deduced. In particular, it is shown that in polygonal domains, where the singularities dominate the regularity of the exact solution (e.g., u∈H1+δ-ε(Ω),∀ε>0,0<δ<1), the optimal rate of convergence is recovered for θ>1-δ. Moreover, for θ≤1-δ the deduced error upper bound has the same order as the classical error estimate with respect to L2 norm (based upon the Aubin-Nitsche method). Finally, lower bound estimates of the form ∥eh∥θ≥ C∥eh∥12, for some values of θ and positive definite unsymmetric bilinear functionals, are deduced. © 2004 IMACS. Published by Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Applied Numerical Mathematics |
en |
dc.identifier.doi |
10.1016/j.apnum.2004.07.005 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
449 |
en |
dc.identifier.epage |
458 |
en |