dc.contributor.author |
Lazopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T01:23:06Z |
|
dc.date.available |
2014-03-01T01:23:06Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16817 |
|
dc.subject |
Critical Behavior |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Cables |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Struts |
en |
dc.subject.other |
Delay convention |
en |
dc.subject.other |
Post-critical behavior |
en |
dc.subject.other |
T-3 tensegrity structures |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
Stability of an elastic tensegrity structure |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00707-005-0244-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00707-005-0244-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A T-3 tensegrity structure composed by three struts and six elastic cables is considered. Adopting delay convention, stability of this model is studied. Two kinds of simple instabilities are investigated. The first is concerned with the global (overall) instability of the model and the second with the local-Euler-buckling of the struts. Compound instabilities are also studied. Critical conditions are found and post-critical behavior is described. © Springer-Verlag 2005. |
en |
heal.publisher |
SPRINGER WIEN |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/s00707-005-0244-0 |
en |
dc.identifier.isi |
ISI:000232763200001 |
en |
dc.identifier.volume |
179 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
10 |
en |