dc.contributor.author |
Panagiotou, G |
en |
dc.contributor.author |
Christakopoulos, P |
en |
dc.contributor.author |
Olsson, L |
en |
dc.date.accessioned |
2014-03-01T01:23:11Z |
|
dc.date.available |
2014-03-01T01:23:11Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0168-1656 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16861 |
|
dc.subject |
Different carbon sources |
en |
dc.subject |
Fusarium oxysporum |
en |
dc.subject |
Metabolite profile |
en |
dc.subject |
Principal component analysis |
en |
dc.subject |
Redox balance |
en |
dc.subject.classification |
Biotechnology & Applied Microbiology |
en |
dc.subject.other |
Amino acids |
en |
dc.subject.other |
Ethanol |
en |
dc.subject.other |
Redox reactions |
en |
dc.subject.other |
Substrates |
en |
dc.subject.other |
Cultivation conditions |
en |
dc.subject.other |
Ethanol production |
en |
dc.subject.other |
Cultivation |
en |
dc.subject.other |
acetic acid |
en |
dc.subject.other |
alcohol |
en |
dc.subject.other |
ammonia |
en |
dc.subject.other |
arabinose |
en |
dc.subject.other |
glucose 1 phosphate |
en |
dc.subject.other |
nitrate |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
pentose |
en |
dc.subject.other |
pentose phosphate |
en |
dc.subject.other |
reduced nicotinamide adenine dinucleotide |
en |
dc.subject.other |
reduced nicotinamide adenine dinucleotide phosphate |
en |
dc.subject.other |
xylitol |
en |
dc.subject.other |
xylose |
en |
dc.subject.other |
alcohol production |
en |
dc.subject.other |
article |
en |
dc.subject.other |
carbon source |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
culture optimization |
en |
dc.subject.other |
denitrification |
en |
dc.subject.other |
fungal cell culture |
en |
dc.subject.other |
fungal metabolism |
en |
dc.subject.other |
fungal strain |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.subject.other |
metabolite |
en |
dc.subject.other |
metabolomics |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
oxidation reduction reaction |
en |
dc.subject.other |
oxygen supply |
en |
dc.subject.other |
pentose phosphate cycle |
en |
dc.subject.other |
principal component analysis |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
Adaptation, Physiological |
en |
dc.subject.other |
Cell Culture Techniques |
en |
dc.subject.other |
Fungal Proteins |
en |
dc.subject.other |
Fusarium |
en |
dc.subject.other |
Gene Expression Profiling |
en |
dc.subject.other |
Gene Expression Regulation, Fungal |
en |
dc.subject.other |
Proteome |
en |
dc.subject.other |
Fungi |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.title |
The influence of different cultivation conditions on the metabolome of Fusarium oxysporum |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jbiotec.2005.05.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jbiotec.2005.05.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The two most widespread pentose sugars found in the biosphere are D-xylose and L-arabinose. They are both potential substrates for ethanol production. The purpose of this study was to better understand the redox constraints imposed to Fusarium oxysporum during utilization of pentoses. In order to increase ethanol yield and decrease by-product formation, nitrate was used as nitrogen source. The use of NADH, the cofactor in denitrification process when using nitrate as a nitrogen source, improved the ethanol yield on xylose to 0.89 mol mol(-1) compared to the ethanol yield achieved using ammonium as nitrogen source 0.44 mol mol(-1). The improved ethanol yield was followed by a 28% decrease in yield of the by-product xylitol. In order to investigate the metabolic pathway of arabinose and the metabolic limitations for the efficient ethanol production from this sugar, the extracellular and intracellular metabolite profiles were determined under aerobic and anaerobic cultivation conditions. The results of this study clearly show difficulties in channelling of glucose-1-P (G1P) to pentose phosphate pathway (PPP) and reduced NADPH regeneration, suggesting that NADPH becomes a limiting factor for arabinose conversion, resulting in excessive acetate production. Variations of the fungus intracellular amino and non-amino acid pool, under different culture conditions, were evaluated using principal component analysis (PCA). PCA projection of the metabolome data collected from F. oxysporum subjected to environmental perturbations succeeded to visualize different physiological states and the conclusions of this study were that the metabolite profile is unique according to: (1) the carbon source and (2) the oxygen supply, and to a lesser extent to the cultivation phase. (C) 2005 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Biotechnology |
en |
dc.identifier.doi |
10.1016/j.jbiotec.2005.05.004 |
en |
dc.identifier.isi |
ISI:000231124200008 |
en |
dc.identifier.volume |
118 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
304 |
en |
dc.identifier.epage |
315 |
en |