HEAL DSpace

The inverse periodic spectral theory of the Euler-Bernoulli equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papanicolaou, VG en
dc.date.accessioned 2014-03-01T01:23:11Z
dc.date.available 2014-03-01T01:23:11Z
dc.date.issued 2005 en
dc.identifier.issn 1548-159X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16862
dc.relation.uri http://www.math.ntua.gr/~papanico/publications/paper31c.pdf en
dc.relation.uri http://www.intlpress.com/DPDE/journal/vol2/2-2/DPDE-v02n2-A02.pdf en
dc.relation.uri http://intlpress.com/DPDE/journal/vol2/2-2/DPDE-v02n2-A02.pdf en
dc.subject Euler-Bernoulli (or beam) operator en
dc.subject Euler-Bernoulli equation for the vibrating beam en
dc.subject Hill's operator en
dc.subject periodic coefficients en
dc.subject Floquet theory en
dc.subject spectrum en
dc.subject pseudospectrum en
dc.subject multipoint eigenvalue problem en
dc.subject inverse periodic spectral theory en
dc.subject Abel's theorem en
dc.subject.classification Mathematics, Applied en
dc.subject.other MATRIX HILLS EQUATION en
dc.subject.other SCHRODINGER-OPERATORS en
dc.subject.other TRACE FORMULAS en
dc.subject.other VIBRATING BEAM en
dc.subject.other SYSTEMS en
dc.subject.other SCATTERING en
dc.title The inverse periodic spectral theory of the Euler-Bernoulli equation en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The Floquet (direct spectral) theory of the periodic Euler-Bernoulli equation has been developed by the author in [371, [41], and [38]. A particular case of the inverse problem has been studied in [39]. Here we focus on the inverse periodic spectral problem. A key ingredient is an extended version of Abel's theorem for the existense of meromorphic functions on Riemann Surfaces. To avoid technicalities, we have assumed that the Floquet multiplier has finitely many branch points (in the Hill operator case this corresponds to the assumption that the spectrum has finitely many gaps). en
heal.publisher INTERNATIONAL PRESS en
heal.journalName DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS en
dc.identifier.isi ISI:000240060200002 en
dc.identifier.volume 2 en
dc.identifier.issue 2 en
dc.identifier.spage 127 en
dc.identifier.epage 148 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής