dc.contributor.author |
Kalogeropoulos, G |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:23:11Z |
|
dc.date.available |
2014-03-01T01:23:11Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0898-1221 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16866 |
|
dc.subject |
Block companion matrix |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Matrix polynomial |
en |
dc.subject |
Polar decomposition |
en |
dc.subject |
Singular value |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Computer applications |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Block companion matrix |
en |
dc.subject.other |
Matrix polynomial |
en |
dc.subject.other |
Polar decomposition |
en |
dc.subject.other |
Singular values |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
The polar decomposition of block companion matrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.camwa.2005.02.014 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.camwa.2005.02.014 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Let L(lambda) = I(n)lambda(m) + A(m-1)lambda(m-1) + --- +A(1)lambda + A(0) be an n x n monic matrix polynomial, and let C-L be the corresponding block companion matrix. In this note, we extend a known result on scalar polynomials to obtain a formula for the polar decomposition of C-L when the matrices A(0) and Sigma(j = 1)(m-1) A(j)A(j)(*) are nonsingular. (c) 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Mathematics with Applications |
en |
dc.identifier.doi |
10.1016/j.camwa.2005.02.014 |
en |
dc.identifier.isi |
ISI:000231915100018 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
529 |
en |
dc.identifier.epage |
537 |
en |