HEAL DSpace

Thoracic non-rigid registration combining self-organizing maps and radial basis functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Matsopoulos, GK en
dc.contributor.author Mouravliansky, NA en
dc.contributor.author Asvestas, PA en
dc.contributor.author Delibasis, KK en
dc.contributor.author Kouloulias, V en
dc.date.accessioned 2014-03-01T01:23:12Z
dc.date.available 2014-03-01T01:23:12Z
dc.date.issued 2005 en
dc.identifier.issn 1361-8415 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16870
dc.subject Computed tomography en
dc.subject Kohonen neural network en
dc.subject Non-rigid registration en
dc.subject Radial basis functions en
dc.subject Self-organizing maps en
dc.subject Stage III non-small cell lung cancer en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other Cells en
dc.subject.other Data acquisition en
dc.subject.other Database systems en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Patient monitoring en
dc.subject.other Radiotherapy en
dc.subject.other Scanning en
dc.subject.other Tomography en
dc.subject.other Tumors en
dc.subject.other Computed Tomography (CT) en
dc.subject.other Neural network model en
dc.subject.other Non-rigid registration scheme en
dc.subject.other Self-organizing maps en
dc.subject.other Medical imaging en
dc.subject.other adult en
dc.subject.other analytical error en
dc.subject.other anatomy en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other breathing mechanics en
dc.subject.other cancer radiotherapy en
dc.subject.other cancer staging en
dc.subject.other clinical article en
dc.subject.other computer assisted tomography en
dc.subject.other controlled study en
dc.subject.other human en
dc.subject.other image processing en
dc.subject.other inhalation en
dc.subject.other lung non small cell cancer en
dc.subject.other priority journal en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.subject.other radiological procedures en
dc.subject.other rib en
dc.subject.other scapula en
dc.subject.other thorax radiography en
dc.subject.other treatment planning en
dc.subject.other tumor volume en
dc.subject.other validation process en
dc.subject.other vertebra en
dc.subject.other visual information en
dc.subject.other Adult en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Carcinoma, Non-Small-Cell Lung en
dc.subject.other Female en
dc.subject.other Humans en
dc.subject.other Imaging, Three-Dimensional en
dc.subject.other Information Storage and Retrieval en
dc.subject.other Lung Neoplasms en
dc.subject.other Male en
dc.subject.other Middle Aged en
dc.subject.other Pattern Recognition, Automated en
dc.subject.other Radiographic Image Enhancement en
dc.subject.other Radiographic Image Interpretation, Computer-Assisted en
dc.subject.other Radiography, Thoracic en
dc.subject.other Reproducibility of Results en
dc.subject.other Sensitivity and Specificity en
dc.subject.other Subtraction Technique en
dc.title Thoracic non-rigid registration combining self-organizing maps and radial basis functions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.media.2004.09.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.media.2004.09.002 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract An automatic three-dimensional non-rigid registration scheme is proposed in this paper and applied to thoracic computed tomography (CT) data of patients with stage III non-small cell lung cancer (NSCLC). According to the registration scheme, initially anatomical set of points such as the vertebral spine, the ribs, and shoulder blades are automatically segmented slice by slice from the two CT scans of the same patient in order to serve as interpolant points. Based on these extracted features, a rigid-body transformation is then applied to provide a pre-registration of the data. To establish correspondence between the feature points, the novel application of the self-organizing maps (SOMs) is adopted. In particular, the automatic correspondence of the interpolant points is based on the initialization of the Kohonen neural network model capable to identify 500 corresponding pairs of points approximately in the two CT sets. Then, radial basis functions (RBFs) using the shifted log function is subsequently employed for elastic warping of the image volume, using the correspondence between the interpolant points, as obtained in the previous phase. Quantitative and qualitative results are also presented to validate the performance of the proposed elastic registration scheme resulting in an alignment error of 6 mm, on average, over 15 CT paired datasets. Finally, changes of the tumor volume in respect to each reference dataset are estimated for all patients, which indicate inspiration and/or movement of the patient during acquisition of the data. Thus, the practical implementation of this scheme could provide estimations of lung tumor volumes during radiotherapy treatment planning. (c) 2004 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Medical Image Analysis en
dc.identifier.doi 10.1016/j.media.2004.09.002 en
dc.identifier.isi ISI:000229376600005 en
dc.identifier.volume 9 en
dc.identifier.issue 3 en
dc.identifier.spage 237 en
dc.identifier.epage 254 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής