HEAL DSpace

Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:23:18Z
dc.date.available 2014-03-01T01:23:18Z
dc.date.issued 2005 en
dc.identifier.issn 0262-6667 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16886
dc.subject Entropy en
dc.subject Hydrological design en
dc.subject Hydrological extremes en
dc.subject Hydrological statistics en
dc.subject Power laws en
dc.subject Risk en
dc.subject Scaling en
dc.subject Uncertainty en
dc.subject.classification Water Resources en
dc.subject.other Approximation theory en
dc.subject.other Correlation methods en
dc.subject.other Entropy en
dc.subject.other Maximum principle en
dc.subject.other Normal distribution en
dc.subject.other Random processes en
dc.subject.other Autocorrelation properties en
dc.subject.other Coefficient of variation (CV) en
dc.subject.other Hydrological processes en
dc.subject.other Maximum entropy (ME) en
dc.subject.other Hydrology en
dc.subject.other entropy en
dc.subject.other hydrological modeling en
dc.subject.other power law en
dc.subject.other stochasticity en
dc.title Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling en
heal.type journalArticle en
heal.identifier.primary 10.1623/hysj.50.3.381.65031 en
heal.identifier.secondary http://dx.doi.org/10.1623/hysj.50.3.381.65031 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, in a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle. Copyright © 2005 IAHS Press. en
heal.publisher IAHS PRESS, INST HYDROLOGY en
heal.journalName Hydrological Sciences Journal en
dc.identifier.doi 10.1623/hysj.50.3.381.65031 en
dc.identifier.isi ISI:000229683900001 en
dc.identifier.volume 50 en
dc.identifier.issue 3 en
dc.identifier.spage 381 en
dc.identifier.epage 404 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής