HEAL DSpace

Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:23:18Z
dc.date.available 2014-03-01T01:23:18Z
dc.date.issued 2005 en
dc.identifier.issn 0262-6667 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16887
dc.subject Entropy en
dc.subject Fractional Gaussian noise en
dc.subject Hurst phenomenon en
dc.subject Hydrological persistence en
dc.subject Hydrological prediction en
dc.subject Hydrological statistics en
dc.subject Long-range dependence en
dc.subject Power laws en
dc.subject Risk en
dc.subject Scaling en
dc.subject Uncertainty en
dc.subject.classification Water Resources en
dc.subject.other Correlation methods en
dc.subject.other Entropy en
dc.subject.other Maximum principle en
dc.subject.other Random processes en
dc.subject.other Time series analysis en
dc.subject.other Hydrological processes en
dc.subject.other Hydrological stochastics en
dc.subject.other Marginal distribution en
dc.subject.other Maximum entropy (ME) en
dc.subject.other Hydrology en
dc.subject.other entropy en
dc.subject.other hydrological modeling en
dc.subject.other power law en
dc.subject.other stochasticity en
dc.title Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling en
heal.type journalArticle en
heal.identifier.primary 10.1623/hysj.50.3.405.65028 en
heal.identifier.secondary http://dx.doi.org/10.1623/hysj.50.3.405.65028 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation and lag-one autocorrelation. In the first part of the study, the marginal distributional properties of hydrological processes and the state scaling behaviour were investigated. This second part of the study is devoted to joint distributional properties of hydrological processes. Specifically, it investigates the time dependence structure that may result from the ME principle and shows that the time scaling behaviour (or the Hurst phenomenon) may be obtained by this principle under the additional general condition that all time scales are of equal importance for the application of the ME principle. The omnipresence of the time scaling behaviour in numerous long hydrological time series examined in the literature (one of which is used here as an example), validates the applicability of the ME principles, thus emphasizing the dominance of uncertainty in hydrological processes. Copyright © 2005 IAHS Press. en
heal.publisher IAHS PRESS, INST HYDROLOGY en
heal.journalName Hydrological Sciences Journal en
dc.identifier.doi 10.1623/hysj.50.3.405.65028 en
dc.identifier.isi ISI:000229683900002 en
dc.identifier.volume 50 en
dc.identifier.issue 3 en
dc.identifier.spage 405 en
dc.identifier.epage 426 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής