HEAL DSpace

Uniqueness for plane crack problems in dipolar gradient elasticity and in couple-stress elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Grentzelou, CG en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:23:18Z
dc.date.available 2014-03-01T01:23:18Z
dc.date.issued 2005 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16888
dc.subject Couple-stress elasticity en
dc.subject Crack problems en
dc.subject Dipolar stresses en
dc.subject Generalized continuum theories en
dc.subject Gradient elasticity en
dc.subject Microstructure en
dc.subject Uniqueness en
dc.subject.classification Mechanics en
dc.subject.other Anisotropy en
dc.subject.other Elasticity en
dc.subject.other Mathematical models en
dc.subject.other Microstructure en
dc.subject.other Problem solving en
dc.subject.other Stresses en
dc.subject.other Theorem proving en
dc.subject.other Couple stress elasticity en
dc.subject.other Crack problems en
dc.subject.other Dipolar stresses en
dc.subject.other Generalized continuum theories en
dc.subject.other Gradient elasticity en
dc.subject.other Uniqueness en
dc.subject.other Cracks en
dc.title Uniqueness for plane crack problems in dipolar gradient elasticity and in couple-stress elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2005.02.045 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2005.02.045 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The present work deals with the uniqueness theorem for plane crack problems in solids characterized by dipolar gradient elasticity. The theory of gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory employed here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. These cases are also treated in the present study. We consider an anisotropic material response of the cracked plane body, within the linear version of gradient elasticity, and conditions of plane-strain or anti-plane strain. It is emphasized that, for crack problems in general, a uniqueness theorem more extended than the standard Kirchhoff theorem is needed because of the singular behavior of the solutions at the crack tips. Such a theorem will necessarily impose certain restrictions on the behavior of the fields in the vicinity of crack tips. In standard elasticity, a theorem was indeed established by Knowles and Pucik [Knowles, J.K., Pucik, T.A., 1973. Uniqueness for plane crack problems in linear elastostatics. J. Elast. 3, 155-160], who showed that the necessary conditions for solution uniqueness are a bounded displacement field and a bounded body-force field. In our study, we show that the additional (to the two previous conditions) requirement of a bounded displacement-gradient field in the vicinity of the crack tips guarantees uniqueness within the general form of the theory of dipolar gradient elasticity. In the specific cases of couple-stress elasticity and pure strain-gradient elasticity, the additional requirement is less stringent. This only involves a bounded rotation field for the first case and a bounded strain field for the second case. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2005.02.045 en
dc.identifier.isi ISI:000232519900005 en
dc.identifier.volume 42 en
dc.identifier.issue 24-25 en
dc.identifier.spage 6226 en
dc.identifier.epage 6244 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής