HEAL DSpace

Use of modulated excitation Signals in medical ultrasound. Part I: Basic concepts and expected benefits

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Misaridis, T en
dc.contributor.author Jensen, JA en
dc.date.accessioned 2014-03-01T01:23:18Z
dc.date.available 2014-03-01T01:23:18Z
dc.date.issued 2005 en
dc.identifier.issn 0885-3010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16895
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Attenuation en
dc.subject.other Computer simulation en
dc.subject.other Frequency modulation en
dc.subject.other Imaging techniques en
dc.subject.other Optical resolving power en
dc.subject.other Signal processing en
dc.subject.other Signal to noise ratio en
dc.subject.other Waveform analysis en
dc.subject.other Medical ultrasound en
dc.subject.other Pulse compression en
dc.subject.other Scanner en
dc.subject.other Wiener filters en
dc.subject.other Ultrasonics en
dc.title Use of modulated excitation Signals in medical ultrasound. Part I: Basic concepts and expected benefits en
heal.type journalArticle en
heal.identifier.primary 10.1109/TUFFC.2005.1406545 en
heal.identifier.secondary http://dx.doi.org/10.1109/TUFFC.2005.1406545 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper, the first from a series of three papers on the application of coded excitation signals in medical ultrasound, discusses the basic principles and ultrasound-related problems of pulse compression. The concepts of signal modulation and matched filtering are given, and a simple model of attenuation relates the matched filter response with the ambiguity function, known from radar. Based on this analysis and the properties of the ambiguity function, the selection of coded waveforms suitable for ultrasound imaging is discussed. It is shown that linear frequency modulation (FM) signals have the best and most robust features for ultrasound imaging. Other coded signals such as nonlinear FM and binary complementary Golay codes also have been considered and characterized in terms of signal-to-noise ratio (SNR) and sensitivity to frequency shifts. Using the simulation program Field II, it is found that in the case of linear FM signals, a SNR improvement of 12 to 18 dB can be expected for large imaging depths in attenuating media, without any depth-dependent filter compensation. In contrast, nonlinear FM modulation and binary codes are shown to give a SNR. improvement of only 4 to 9 dB when processed with a matched filter. Other issues, such as depth-dependent matched filtering and use of filters other than the matched filter (inverse and Wiener filters) also are addressed. © 2005 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control en
dc.identifier.doi 10.1109/TUFFC.2005.1406545 en
dc.identifier.isi ISI:000227598700004 en
dc.identifier.volume 52 en
dc.identifier.issue 2 en
dc.identifier.spage 177 en
dc.identifier.epage 190 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής