HEAL DSpace

Variable selection and data pre-processing in NN modelling of complex chemical processes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadokonstantakis, S en
dc.contributor.author MacHefer, S en
dc.contributor.author Schnitzlein, K en
dc.contributor.author Lygeros, AI en
dc.date.accessioned 2014-03-01T01:23:19Z
dc.date.available 2014-03-01T01:23:19Z
dc.date.issued 2005 en
dc.identifier.issn 0098-1354 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16906
dc.subject Data preprocessing en
dc.subject Neural networks en
dc.subject Process modelling en
dc.subject Variable entropy en
dc.subject Variable information en
dc.subject Variable selection en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Chemical en
dc.subject.other Condensation reactions en
dc.subject.other Database systems en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Generalization accuracy en
dc.subject.other Neural network models en
dc.subject.other Process yield en
dc.subject.other Data processing en
dc.subject.other chemical processing en
dc.subject.other modeling en
dc.subject.other neural network en
dc.title Variable selection and data pre-processing in NN modelling of complex chemical processes en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compchemeng.2005.01.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compchemeng.2005.01.004 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The neural network models represent nowadays a powerful tool for complicated process identification. However, because of the fact that they belong to the category of data-driven ""black box"" models, they cannot avoid the consequences of the ""garbage in-garbage out"" rule. This work proposes a simultaneous data balancing-variable selection procedure, which is based on traditional statistical techniques and modern information theoretic approaches. It is implemented on a complicated dataset of restricted quality, which refers to a commercial aldol condensation unit (BASF). Based on the pre-processed database a neural model for the prediction of the process yield has been developed. The results verify the importance of the pre-processing stage in terms of generalization accuracy as well as of simpler network structure due to the data-variable selection procedure. Finally, an analysis of the model trends has been implemented to assess qualitative characteristics of the model, which was then used in industrial test runs and resulted in an improvement of the process operation. © 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Chemical Engineering en
dc.identifier.doi 10.1016/j.compchemeng.2005.01.004 en
dc.identifier.isi ISI:000229955500012 en
dc.identifier.volume 29 en
dc.identifier.issue 7 en
dc.identifier.spage 1647 en
dc.identifier.epage 1659 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής