Two nontrivial critical points for nonsmooth functionals via local linking and applications

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kandilakis, D en
dc.contributor.author Kourogenis, NC en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:23:21Z
dc.date.available 2014-03-01T01:23:21Z
dc.date.issued 2006 en
dc.identifier.issn 0925-5001 en
dc.identifier.uri http://hdl.handle.net/123456789/16922
dc.subject Cerami condition en
dc.subject Critical point en
dc.subject Generalized subdifferential en
dc.subject Local linking en
dc.subject Locally Lipschitz function en
dc.subject Nonsmooth critical point theory en
dc.subject p-Laplacian en
dc.subject Periodic system en
dc.subject Principal eigenvalue en
dc.subject Problem at resonance en
dc.subject.classification Operations Research & Management Science en
dc.subject.classification Mathematics, Applied en
dc.subject.other Boundary conditions en
dc.subject.other Functions en
dc.subject.other Laplace transforms en
dc.subject.other Resonance en
dc.subject.other Cerami condition en
dc.subject.other Generalized subdifferential en
dc.subject.other Periodic system en
dc.subject.other Principal eigenvalue en
dc.subject.other Theorem proving en
dc.title Two nontrivial critical points for nonsmooth functionals via local linking and applications en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10898-005-3884-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10898-005-3884-7 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, we extend to nonsmooth locally Lipschitz functionals the multiplicity result of Brezis-Nirenberg (Communication Pure Applied Mathematics and 44 (1991)) based on a local linking condition. Our approach is based on the nonsmooth critical point theory for locally Lipschitz functions which uses the Clarke subdifferential. We present two applications. This first concerns periodic systems driven by the ordinary vector p-Laplacian. The second concerns elliptic equations at resonance driven by the partial p-Laplacian with Dirichlet boundary condition. In both cases the potential function is nonsmooth, locally Lipschitz. © Springer 2006. en
heal.publisher SPRINGER en
heal.journalName Journal of Global Optimization en
dc.identifier.doi 10.1007/s10898-005-3884-7 en
dc.identifier.isi ISI:000235460800003 en
dc.identifier.volume 34 en
dc.identifier.issue 2 en
dc.identifier.spage 219 en
dc.identifier.epage 244 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record