HEAL DSpace

A BEM based domain decomposition method for nonlinear analysis of elastic space membranes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiatas, GC en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:23:22Z
dc.date.available 2014-03-01T01:23:22Z
dc.date.issued 2006 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16928
dc.subject Analog Equation Method en
dc.subject Boundary elements en
dc.subject Domain Decomposition Method en
dc.subject Flat membranes en
dc.subject Large deflections en
dc.subject Meshless BEM en
dc.subject Nonlinear en
dc.subject Space membranes en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Nonlinear equations en
dc.subject.other Numerical analysis en
dc.subject.other Partial differential equations en
dc.subject.other Problem solving en
dc.subject.other Analog Equation Method (AEM) en
dc.subject.other Domain Decomposition Method (DDM) en
dc.subject.other Elastic space membranes en
dc.subject.other Boundary element method en
dc.title A BEM based domain decomposition method for nonlinear analysis of elastic space membranes en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-005-0725-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-005-0725-y en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper the Domain Decomposition Method (DDM) is developed for nonlinear analysis of both flat and space elastic membranes of complicated geometry which may have holes. The domain of the projection of the membrane on the xy plane is decomposed into non-overlapping subdomains and the membrane problem is solved sequentially in each subdomain starting from zero displacements on the virtual boundaries. The procedure is repeated until the traction continuity conditions are also satisfied on the virtual boundaries. The membrane problem in each subdomain is solved using the Analog Equation Method (AEM). According to this method the three coupled strongly nonlinear partial differential equations, governing the response of the membrane, are replaced by three uncoupled linear membrane equations (Poisson's equations) subjected to fictitious sources under the same boundary conditions. The fictitious sources are established using a meshless BEM procedure. Example problems are presented, for both flat and space membranes, which illustrate the method and demonstrate its efficiency and accuracy. en
heal.publisher SPRINGER en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-005-0725-y en
dc.identifier.isi ISI:000237184100003 en
dc.identifier.volume 38 en
dc.identifier.issue 2 en
dc.identifier.spage 119 en
dc.identifier.epage 131 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής