HEAL DSpace

A classification technique based on radial basis function neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sarimveis, H en
dc.contributor.author Doganis, P en
dc.contributor.author Alexandridis, A en
dc.date.accessioned 2014-03-01T01:23:22Z
dc.date.available 2014-03-01T01:23:22Z
dc.date.issued 2006 en
dc.identifier.issn 0965-9978 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16931
dc.subject Classification en
dc.subject Fuzzy means en
dc.subject Neural networks en
dc.subject Quality properties en
dc.subject Radial basis functions en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Computer architecture en
dc.subject.other Data acquisition en
dc.subject.other Fuzzy sets en
dc.subject.other Online systems en
dc.subject.other Product development en
dc.subject.other Sensors en
dc.subject.other Classification en
dc.subject.other Fuzzy means en
dc.subject.other Quality properties en
dc.subject.other Radial basis functions en
dc.subject.other Radial basis function networks en
dc.title A classification technique based on radial basis function neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.advengsoft.2005.07.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.advengsoft.2005.07.005 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, a new classification method is proposed based on the radial basis function (RBF) neural network architecture. The method is particularly useful for manufacturing processes, in cases where on-line sensors for classifying the product quality are not. available. More specifically, the fuzzy means algorithm is employed on a set of training data, where the input data refer to variables that are measured on-line and the output data correspond to quality variables that are classified by human experts. The produced neural network model acts as an artificial sensor that is able to classify the product quality in real time. The proposed method is illustrated through an application to real data collected from a paper machine. The method produces successful results and outperforms a number of classifiers, which are based on the feedforward neural network (FNN) architecture. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Engineering Software en
dc.identifier.doi 10.1016/j.advengsoft.2005.07.005 en
dc.identifier.isi ISI:000235772700002 en
dc.identifier.volume 37 en
dc.identifier.issue 4 en
dc.identifier.spage 218 en
dc.identifier.epage 221 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής