dc.contributor.author |
Loizou, SG |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T01:23:24Z |
|
dc.date.available |
2014-03-01T01:23:24Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16947 |
|
dc.subject |
navigation functions |
en |
dc.subject |
multiple robots |
en |
dc.subject |
on-line planning |
en |
dc.subject |
centralized control |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
EXACT ROBOT NAVIGATION |
en |
dc.title |
A feedback-based multiagent navigation framework |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207720500438597 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207720500438597 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper, an on-line multirobot navigation methodology is presented, extending the concept of navigation functions from the single-point-sized holonomic robot domain to the domain of multiple non-point-sized holonomic robots. An appropriate measure of the distance from bad sets, suitable for multirobot navigation, is introduced. The derived closed form analytic solution provides a feedback-based navigation scheme, suitable for implementation, with theoretically guaranteed global convergence and collision avoidance properties. The proposed methodology is validated through non-trivial simulations. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE |
en |
dc.identifier.doi |
10.1080/00207720500438597 |
en |
dc.identifier.isi |
ISI:000239237700005 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
377 |
en |
dc.identifier.epage |
384 |
en |