HEAL DSpace

A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: Studies on the effect of clonogenic cell density

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stamatakos, GS en
dc.contributor.author Antipas, VP en
dc.contributor.author Uzunoglu, NK en
dc.contributor.author Dale, RG en
dc.date.accessioned 2014-03-01T01:23:24Z
dc.date.available 2014-03-01T01:23:24Z
dc.date.issued 2006 en
dc.identifier.issn 0007-1285 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16949
dc.subject Cell Cycle en
dc.subject Complex Dynamics en
dc.subject Computer Simulation en
dc.subject Dynamic System en
dc.subject Educational Tool en
dc.subject glioblastoma multiforme en
dc.subject Radiation Therapy en
dc.subject Self Organization en
dc.subject Simulation Model en
dc.subject Treatment Planning en
dc.subject Wild Type en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other protein p53 en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other cancer cell culture en
dc.subject.other cancer growth en
dc.subject.other cell cycle en
dc.subject.other cell density en
dc.subject.other cell population en
dc.subject.other cell proliferation en
dc.subject.other clonogenesis en
dc.subject.other computer model en
dc.subject.other computer simulation en
dc.subject.other gene mutation en
dc.subject.other glioblastoma en
dc.subject.other human en
dc.subject.other image analysis en
dc.subject.other in vivo study en
dc.subject.other oxygenation en
dc.subject.other prediction en
dc.subject.other quantitative analysis en
dc.subject.other radiosensitivity en
dc.subject.other treatment planning en
dc.subject.other tumor vascularization en
dc.subject.other validation process en
dc.subject.other wild type en
dc.subject.other Algorithms en
dc.subject.other Brain en
dc.subject.other Brain Neoplasms en
dc.subject.other Cell Count en
dc.subject.other Cell Cycle en
dc.subject.other Cell Death en
dc.subject.other Cell Hypoxia en
dc.subject.other Cell Proliferation en
dc.subject.other Clone Cells en
dc.subject.other Computer Simulation en
dc.subject.other Dose-Response Relationship, Radiation en
dc.subject.other Glioblastoma en
dc.subject.other Humans en
dc.subject.other Treatment Outcome en
dc.title A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: Studies on the effect of clonogenic cell density en
heal.type journalArticle en
heal.identifier.primary 10.1259/bjr/30604050 en
heal.identifier.secondary http://dx.doi.org/10.1259/bjr/30604050 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Tumours behave as complex, self-organizing, opportunistic dynamic systems. In an attempt to better understand and describe the highly complicated tumour behaviour, a novel four-dimensional simulation model of in vivo tumour growth and response to radiotherapy has been developed. This paper presents the latest improvements to the model as well as a parametric validation of it. Improvements include an advanced algorithm leading to conformal tumour shrinkage, a quantitative consideration of the influence of oxygenation on radiosensitivity and a more realistic, imaging based description of the neovasculature distribution. The tumours selected for the validation of the model are a wild type and a mutated p53 gene glioblastomas multiforme. According to the model predictions, a whole tumour with larger cell cycle duration tends to repopulate more slowly. A lower oxygen enhancement ratio value leads to a more radiosensitive whole tumour. Higher clonogenic cell density (CCD) produces a higher number of proliferating tumour cells and, therefore, a more difficult tumour to treat. Simulation predictions agree at least semi-quantitatively with clinical experience, and particularly with the outcome of the Radiation Therapy Oncology Group (RTOG) Study 83-02. It is stressed that the model allows a quantitative study of the interrelationship between the competing influences in a complex, dynamic tumour environment. Therefore, the model can already be useful as an educational tool with which to study, understand and demonstrate the role of various parameters in tumour growth and response to irradiation. A long term quantitative clinical adaptation and validation of the model aiming at its integration into the treatment planning procedure is in progress. © 2006 The British Institute of Radiology. en
heal.publisher BRITISH INST RADIOLOGY en
heal.journalName British Journal of Radiology en
dc.identifier.doi 10.1259/bjr/30604050 en
dc.identifier.isi ISI:000237511700006 en
dc.identifier.volume 79 en
dc.identifier.issue 941 en
dc.identifier.spage 389 en
dc.identifier.epage 400 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής