HEAL DSpace

A license plate-recognition algorithm for intelligent transportation system applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostopoulos, CNE en
dc.contributor.author Anagnostopoulos, IE en
dc.contributor.author Loumos, V en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T01:23:24Z
dc.date.available 2014-03-01T01:23:24Z
dc.date.issued 2006 en
dc.identifier.issn 1524-9050 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16954
dc.subject Image processing en
dc.subject License plate recognition (LPR) en
dc.subject Optical character recognition (OCR) en
dc.subject Probabilistic neural network (PNN) en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Alphanumeric characters en
dc.subject.other Character recognition neural network en
dc.subject.other License plate recognition (LPR) en
dc.subject.other Probabilistic neural network (PNN) en
dc.subject.other Algorithms en
dc.subject.other Cameras en
dc.subject.other Image processing en
dc.subject.other Image segmentation en
dc.subject.other Intelligent agents en
dc.subject.other Lighting en
dc.subject.other Neural networks en
dc.subject.other Optical character recognition en
dc.subject.other License plates (automobile) en
dc.title A license plate-recognition algorithm for intelligent transportation system applications en
heal.type journalArticle en
heal.identifier.primary 10.1109/TITS.2006.880641 en
heal.identifier.secondary http://dx.doi.org/10.1109/TITS.2006.880641 en
heal.identifier.secondary 1688109 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, a new algorithm for vehicle license plate identification is proposed, on the basis of a novel adaptive image segmentation technique (sliding concentric windows) and connected component analysis in conjunction with a character recognition neural network. The algorithm was tested with 1334 natural-scene gray-level vehicle images of different backgrounds and ambient illumination. The camera focused in the plate, while the angle of view and the distance from the vehicle varied according to the experimental setup. The license plates properly segmented were 1287 over 1334 input images (96.5%). The optical character recognition system is a two-layer probabilistic neural network (PNN) with topology 108-180-36, whose performance for entire plate recognition reached 89.1%. The PNN is trained to identify alphanumeric characters from car license plates based on data obtained from algorithmic image processing. Combining the above two rates, the overall rate of success for the license-plate-recognition algorithm is 86.0%. A review in the related literature presented in this paper reveals that better performance (90% up to 95%) has been reported, when limitations in distance, angle of view, illumination conditions are set, and background complexity is low. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Intelligent Transportation Systems en
dc.identifier.doi 10.1109/TITS.2006.880641 en
dc.identifier.isi ISI:000240376500010 en
dc.identifier.volume 7 en
dc.identifier.issue 3 en
dc.identifier.spage 377 en
dc.identifier.epage 391 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής