dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Igglessi-Markopoulou, O |
en |
dc.contributor.author |
Alexandridis, A |
en |
dc.date.accessioned |
2014-03-01T01:23:27Z |
|
dc.date.available |
2014-03-01T01:23:27Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1381-1991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16975 |
|
dc.subject |
Neural network |
en |
dc.subject |
QSTR |
en |
dc.subject |
RBF architecture |
en |
dc.subject |
Toxicity |
en |
dc.subject |
Vibrio fischeri |
en |
dc.subject.classification |
Biochemistry & Molecular Biology |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Chemistry, Medicinal |
en |
dc.subject.classification |
Chemistry, Multidisciplinary |
en |
dc.subject.other |
2 chloro 4 nitroaniline |
en |
dc.subject.other |
2 chlorobenzyl cyanide |
en |
dc.subject.other |
2,4 dichloroaniline |
en |
dc.subject.other |
2,4 dichlorophenol |
en |
dc.subject.other |
2,4 dinitroaniline |
en |
dc.subject.other |
2,4,6 trichloroaniline |
en |
dc.subject.other |
2,6 dichloroaniline |
en |
dc.subject.other |
3 chloro 4 uoroaniline |
en |
dc.subject.other |
3 chlorobenzaldehyde |
en |
dc.subject.other |
3 nitroaniline |
en |
dc.subject.other |
3,4 dichloroaniline |
en |
dc.subject.other |
3,4 dichlorobenzaldehyde |
en |
dc.subject.other |
3,4 dichlorobenzonitrile |
en |
dc.subject.other |
4 bromoaniline |
en |
dc.subject.other |
4 chloroaniline |
en |
dc.subject.other |
4 chlorobenzaldehyde |
en |
dc.subject.other |
4 chlorobenzonitrile |
en |
dc.subject.other |
4 chlorobenzyl cyanide |
en |
dc.subject.other |
4 chlorophenol |
en |
dc.subject.other |
4 cholorobenzyl chloride |
en |
dc.subject.other |
4 nitroaniline |
en |
dc.subject.other |
4 nitrophenol |
en |
dc.subject.other |
aniline |
en |
dc.subject.other |
diphenylamine |
en |
dc.subject.other |
hexachloroethane |
en |
dc.subject.other |
organic compound |
en |
dc.subject.other |
ortho cresol |
en |
dc.subject.other |
pentachlorophenol |
en |
dc.subject.other |
phenol |
en |
dc.subject.other |
resorcinol |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
external validity |
en |
dc.subject.other |
lipophilicity |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
statistical analysis |
en |
dc.subject.other |
toxicity |
en |
dc.subject.other |
Vibrio fischeri |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Organic Chemicals |
en |
dc.subject.other |
Quantitative Structure-Activity Relationship |
en |
dc.subject.other |
Toxicology |
en |
dc.subject.other |
Vibrio fischeri |
en |
dc.title |
A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11030-005-9008-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11030-005-9008-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This work introduces a neural network methodology for developing QSTR predictors of toxicity to Vibrio fischeri. The method adopts the Radial Basis Function (RBF) architecture and the fuzzy means training strategy, which is fast and repetitive, in contrast to most traditional training techniques. The data set that was utilized consisted of 39 organic compounds and their corresponding toxicity values to Vibrio fischeri, while lipophilicity, equalized electronegativity and one topological index were used to provide input information to the models. The performance and predictive ability of the RBF model were illustrated through external validation and various statistical tests. The proposed methodology can be used to successfully model toxicity to Vibrio fischerifor a heterogeneous set of compounds. © Springer 2006. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Molecular Diversity |
en |
dc.identifier.doi |
10.1007/s11030-005-9008-y |
en |
dc.identifier.isi |
ISI:000240031400012 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
213 |
en |
dc.identifier.epage |
221 |
en |