HEAL DSpace

A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Melagraki, G en
dc.contributor.author Afantitis, A en
dc.contributor.author Sarimveis, H en
dc.contributor.author Igglessi-Markopoulou, O en
dc.contributor.author Alexandridis, A en
dc.date.accessioned 2014-03-01T01:23:27Z
dc.date.available 2014-03-01T01:23:27Z
dc.date.issued 2006 en
dc.identifier.issn 1381-1991 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16975
dc.subject Neural network en
dc.subject QSTR en
dc.subject RBF architecture en
dc.subject Toxicity en
dc.subject Vibrio fischeri en
dc.subject.classification Biochemistry & Molecular Biology en
dc.subject.classification Chemistry, Applied en
dc.subject.classification Chemistry, Medicinal en
dc.subject.classification Chemistry, Multidisciplinary en
dc.subject.other 2 chloro 4 nitroaniline en
dc.subject.other 2 chlorobenzyl cyanide en
dc.subject.other 2,4 dichloroaniline en
dc.subject.other 2,4 dichlorophenol en
dc.subject.other 2,4 dinitroaniline en
dc.subject.other 2,4,6 trichloroaniline en
dc.subject.other 2,6 dichloroaniline en
dc.subject.other 3 chloro 4 uoroaniline en
dc.subject.other 3 chlorobenzaldehyde en
dc.subject.other 3 nitroaniline en
dc.subject.other 3,4 dichloroaniline en
dc.subject.other 3,4 dichlorobenzaldehyde en
dc.subject.other 3,4 dichlorobenzonitrile en
dc.subject.other 4 bromoaniline en
dc.subject.other 4 chloroaniline en
dc.subject.other 4 chlorobenzaldehyde en
dc.subject.other 4 chlorobenzonitrile en
dc.subject.other 4 chlorobenzyl cyanide en
dc.subject.other 4 chlorophenol en
dc.subject.other 4 cholorobenzyl chloride en
dc.subject.other 4 nitroaniline en
dc.subject.other 4 nitrophenol en
dc.subject.other aniline en
dc.subject.other diphenylamine en
dc.subject.other hexachloroethane en
dc.subject.other organic compound en
dc.subject.other ortho cresol en
dc.subject.other pentachlorophenol en
dc.subject.other phenol en
dc.subject.other resorcinol en
dc.subject.other unclassified drug en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other external validity en
dc.subject.other lipophilicity en
dc.subject.other methodology en
dc.subject.other priority journal en
dc.subject.other statistical analysis en
dc.subject.other toxicity en
dc.subject.other Vibrio fischeri en
dc.subject.other Models, Chemical en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Organic Chemicals en
dc.subject.other Quantitative Structure-Activity Relationship en
dc.subject.other Toxicology en
dc.subject.other Vibrio fischeri en
dc.title A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11030-005-9008-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s11030-005-9008-y en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This work introduces a neural network methodology for developing QSTR predictors of toxicity to Vibrio fischeri. The method adopts the Radial Basis Function (RBF) architecture and the fuzzy means training strategy, which is fast and repetitive, in contrast to most traditional training techniques. The data set that was utilized consisted of 39 organic compounds and their corresponding toxicity values to Vibrio fischeri, while lipophilicity, equalized electronegativity and one topological index were used to provide input information to the models. The performance and predictive ability of the RBF model were illustrated through external validation and various statistical tests. The proposed methodology can be used to successfully model toxicity to Vibrio fischerifor a heterogeneous set of compounds. © Springer 2006. en
heal.publisher SPRINGER en
heal.journalName Molecular Diversity en
dc.identifier.doi 10.1007/s11030-005-9008-y en
dc.identifier.isi ISI:000240031400012 en
dc.identifier.volume 10 en
dc.identifier.issue 2 en
dc.identifier.spage 213 en
dc.identifier.epage 221 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής