HEAL DSpace

A reversible minimum-to-minimum mapping method for the calculation of free-energy differences

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T01:23:30Z
dc.date.available 2014-03-01T01:23:30Z
dc.date.issued 2006 en
dc.identifier.issn 0021-9606 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16987
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Bijective mapping en
dc.subject.other Free-energy differences en
dc.subject.other Minimum-to-minimum mapping en
dc.subject.other Probability densities en
dc.subject.other Algorithms en
dc.subject.other Molecular dynamics en
dc.subject.other Probability density function en
dc.subject.other Real time systems en
dc.subject.other Set theory en
dc.subject.other Free energy en
dc.title A reversible minimum-to-minimum mapping method for the calculation of free-energy differences en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.2138701 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.2138701 en
heal.identifier.secondary 034109 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A general method is introduced for the calculation of the free-energy difference between two systems, 0 and 1, with configuration spaces Omega((0)), Omega((1)) of the same dimensionality. The method relies upon establishing a bijective mapping between disjoint subsets Gamma(i)((0)) of Omega((0)) and corresponding disjoint subsets Gamma(i)((1)) of Omega((1)), and averaging a function of the ratio of configurational integrals over Gamma(i)((0)) and Gamma(i)((1)) with respect to the probability densities of the two systems. The mapped subsets Gamma(i)((0)) and Gamma(i)((1)) need not span the entire configuration spaces Omega((0)) and Omega((1)). The method is applied for the calculation of the excess chemical potential mu(ex) in a Lennard-Jones (LJ) fluid. In this case, Omega((0)) is the configuration space of a (N-1) real molecule plus one ideal-gas molecule system, while Omega((1)) is the configuration space of a N real molecule system occupying the same volume. Gamma(i)((0)) and Gamma(i)((1)) are constructed from hyperspheres of the same radius centered at minimum-energy configurations of a set of "active" molecules lying within distance a from the ideal-gas molecule and the last real molecule, respectively. An algorithm is described for sampling Gamma(i)((0)) and Gamma(i)((1)) given a point in Omega((0)) or in Omega((1)). The algorithm encompasses three steps: "quenching" (minimization with respect to the active-molecule degrees of freedom), "mutation" (gradual conversion of the ideal-gas molecule into a real molecule, with simultaneous minimization of the energy with respect to the active-molecule degrees of freedom), and "excitation" (generation of points on a hypersphere centered at the active-molecule energy minimum). These steps are also carried out in reverse, as required by the bijective nature of the mapping. The mutation step, which establishes a reversible mapping between energy minima with respect to the active degrees of freedom of systems 0 and 1, ensures that excluded volume interactions emerging in the process of converting the ideal-gas molecule into a real molecule are relieved through appropriate rearrangement of the surrounding active molecules. Thus, the insertion problem plaguing traditional methods for the calculation of chemical potential at high densities is alleviated. Results are presented at two state points of the LJ system for a variety of radii a of the active domain. It is shown that the estimated values of mu(ex) are correct in all cases and subject to an order of magnitude lower statistical uncertainty than values based on the same number of Widom [J. Chem. Phys. 39, 2808 (1963)] insertions at high fluid densities. Optimal settings for the new algorithm are identified and distributions of the quantities involved in it [number of active molecules, energy at the sampled minima of systems 0 and 1, and free-energy differences between subsets Gamma(i)((0)) and Gamma(i)((1)) that are mapped onto each other] are explored. en
heal.publisher AMER INST PHYSICS en
heal.journalName Journal of Chemical Physics en
dc.identifier.doi 10.1063/1.2138701 en
dc.identifier.isi ISI:000234757400010 en
dc.identifier.volume 124 en
dc.identifier.issue 3 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής