HEAL DSpace

A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: The paradigm of glioblastoma multiforme treated by temozolomide

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stamatakos, GS en
dc.contributor.author Antipas, VP en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T01:23:31Z
dc.date.available 2014-03-01T01:23:31Z
dc.date.issued 2006 en
dc.identifier.issn 0018-9294 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16992
dc.subject Cancer en
dc.subject Chemotherapy en
dc.subject Chemotherapy optimization en
dc.subject Glioblastoma multiforme en
dc.subject In silico oncology en
dc.subject Monte Carlo en
dc.subject Neovasculature en
dc.subject Patient individualized optimization en
dc.subject Simulation model en
dc.subject Temodal™ en
dc.subject Temodar™ en
dc.subject Temozolomide en
dc.subject Tumor growth en
dc.subject.classification Engineering, Biomedical en
dc.subject.other Algorithms en
dc.subject.other Chemotherapy en
dc.subject.other Computer simulation en
dc.subject.other Medical imaging en
dc.subject.other Monte Carlo methods en
dc.subject.other Oncology en
dc.subject.other Optimization en
dc.subject.other Pathology en
dc.subject.other Toxicity en
dc.subject.other Tumors en
dc.subject.other Chemotherapy optimization en
dc.subject.other Drug administration en
dc.subject.other Glioblastoma multiforme en
dc.subject.other In silico oncology en
dc.subject.other Neovasculature en
dc.subject.other Patient individualized optimization en
dc.subject.other Simulation models en
dc.subject.other Temozolomide en
dc.subject.other Tumor growth en
dc.subject.other Patient treatment en
dc.subject.other prodrug en
dc.subject.other temozolomide en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other calculation en
dc.subject.other cell en
dc.subject.other chemotherapy en
dc.subject.other genetics en
dc.subject.other glioblastoma en
dc.subject.other histopathology en
dc.subject.other human en
dc.subject.other imaging en
dc.subject.other metabolite en
dc.subject.other Monte Carlo method en
dc.subject.other simulation en
dc.subject.other solid tumor en
dc.subject.other Antineoplastic Agents, Alkylating en
dc.subject.other Cell Proliferation en
dc.subject.other Cell Survival en
dc.subject.other Computer Simulation en
dc.subject.other Dacarbazine en
dc.subject.other Drug Therapy en
dc.subject.other Drug Therapy, Computer-Assisted en
dc.subject.other Glioblastoma en
dc.subject.other Humans en
dc.subject.other Models, Biological en
dc.subject.other Treatment Outcome en
dc.title A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: The paradigm of glioblastoma multiforme treated by temozolomide en
heal.type journalArticle en
heal.identifier.primary 10.1109/TBME.2006.873761 en
heal.identifier.secondary 1658141 en
heal.identifier.secondary http://dx.doi.org/10.1109/TBME.2006.873761 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A novel four-dimensional, patient-specific Monte Carlo simulation model of solid tumor response to chemotherapeutic treatment in vivo is presented. The special case of glioblastoma multiforme treated by temozolomide is addressed as a simulation paradigm. Nevertheless, a considerable number of the involved algorithms are generally applicable. The model is based on the patient's imaging, histopathologic and genetic data. For a given drug administration schedule lying within acceptable toxicity boundaries, the concentration of the prodrug and its metabolites within the tumor is calculated as a function of time based on the drug pharamacokinetics. A discretization mesh is superimposed upon the anatomical region of interest and within each geometrical cell of the mesh the most prominent biological ""laws"" (cell cycling, necrosis, apoptosis, mechanical restictions, etc.) are applied. The biological cell fates are predicted based on the drug pharmacodynamics. The outcome of the simulation is a prediction of the spatiotemporal activity of the entire tumor and is virtual reality visualized. A good qualitative agreement of the model's predictions with clinical experience supports the applicability of the approach. The proposed model primarily aims at providing a platform for performing patient individualized in silico experiments as a means of chemotherapeutic treatment optimization. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Biomedical Engineering en
dc.identifier.doi 10.1109/TBME.2006.873761 en
dc.identifier.isi ISI:000239263400002 en
dc.identifier.volume 53 en
dc.identifier.issue 8 en
dc.identifier.spage 1467 en
dc.identifier.epage 1477 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής