HEAL DSpace

A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Langousis, A en
dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:23:31Z
dc.date.available 2014-03-01T01:23:31Z
dc.date.issued 2006 en
dc.identifier.issn 00221694 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16994
dc.subject Hurst phenomenon en
dc.subject Scaling en
dc.subject Stochastic hydrology en
dc.subject Stochastic models en
dc.subject.other Correlation methods en
dc.subject.other Mathematical models en
dc.subject.other Statistical methods en
dc.subject.other Stochastic programming en
dc.subject.other Time series analysis en
dc.subject.other Hurst phenomenon en
dc.subject.other Scaling en
dc.subject.other Stochastic hydrology en
dc.subject.other Stochastic models en
dc.subject.other Hydrology en
dc.subject.other Correlation methods en
dc.subject.other Hydrology en
dc.subject.other Mathematical models en
dc.subject.other Statistical methods en
dc.subject.other Stochastic programming en
dc.subject.other Time series analysis en
dc.subject.other behavioral ecology en
dc.subject.other methodology en
dc.subject.other seasonal variation en
dc.subject.other stochasticity en
dc.title A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jhydrol.2005.02.037 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jhydrol.2005.02.037 en
heal.publicationDate 2006 en
heal.abstract In generating synthetic time series of hydrological processes at sub-annual scales, it is important to preserve seasonal characteristics and short-term persistence. At the same time, it is equally important to preserve annual characteristics and overyear scaling behaviour. This scaling behaviour, which is equivalent to the Hurst phenomenon and has been interpreted by many as nonstationarity of processes, has been detected in a large number of hydroclimatic series and has important effects on the planning and design of hydrosystems. However, when seasonal models are used the preservation of annual characteristics and overyear scaling is a difficult task and is often ignored unless disaggregation techniques are applied, which, however, involve several difficulties (e.g. in parameter estimation) and inaccuracies. As an alternative, a new methodology is proposed that directly operates on seasonal time scale, avoiding disaggregation, and that simultaneously preserves annual statistics and the scaling properties on overyear time scales. Two specific stochastic models are proposed, a simple widely used seasonal model with short memory to which long-term persistence is imposed using a linear filter, and a combination of two sub-models, a stationary one with long memory and a cyclostationary one with short memory. Both models are capable of generating spatially correlated synthetic time series for more than one location simultaneously. The models are tested in a real world case and found to be accurate in reproducing all the desired statistical properties and virtually equivalent from an operational point of view. © 2005 Elsevier B.V. All rights reserved. en
heal.journalName Journal of Hydrology en
dc.identifier.doi 10.1016/j.jhydrol.2005.02.037 en
dc.identifier.volume 322 en
dc.identifier.issue 1-4 en
dc.identifier.spage 138 en
dc.identifier.epage 154 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής