HEAL DSpace

Adaptive localized QoS-constrained data aggregation and processing in distributed sensor networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zhu, J en
dc.contributor.author Papavassiliou, S en
dc.contributor.author Yang, J en
dc.date.accessioned 2014-03-01T01:23:32Z
dc.date.available 2014-03-01T01:23:32Z
dc.date.issued 2006 en
dc.identifier.issn 1045-9219 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17010
dc.subject Data aggregation en
dc.subject Distributed networks en
dc.subject Quality of service en
dc.subject Sensor networks en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Computer simulation en
dc.subject.other Constraint theory en
dc.subject.other Data processing en
dc.subject.other Distributed computer systems en
dc.subject.other Mobile computing en
dc.subject.other Quality of service en
dc.subject.other Topology en
dc.subject.other Adaptive data collection algorithm en
dc.subject.other Data aggregation en
dc.subject.other End-to-end latency constraints en
dc.subject.other Sensor data fusion en
dc.title Adaptive localized QoS-constrained data aggregation and processing in distributed sensor networks en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPDS.2006.114 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPDS.2006.114 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, an efficient Quality of Service (QoS)-constrained data aggregation and processing approach for distributed wireless sensor networks is investigated and analyzed. One of the key features of the proposed approach is that the task QoS requirements are taken into account to determine when and where to perform the aggregation in a distributed fashion, based on the availability of local only information. Data aggregation is performed on the fly at intermediate sensor nodes, while at the same time the end-to-end latency constraints are satisfied. Furthermore, a localized adaptive data collection algorithm performed at the source nodes is developed that balances the design tradeoffs of delay, measurement accuracy, and buffer overflow, for given QoS requirements. The performance of the proposed approach is analyzed and evaluated, through modeling and simulation, under different data aggregation scenarios and traffic loads. The impact of several design parameters and tradeoffs on various critical network and application related performance metrics, such as energy efficiency, network lifetime, end-to-end latency, and data loss are also evaluated and discussed. © 2006 IEEE. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE Transactions on Parallel and Distributed Systems en
dc.identifier.doi 10.1109/TPDS.2006.114 en
dc.identifier.isi ISI:000239249800004 en
dc.identifier.volume 17 en
dc.identifier.issue 9 en
dc.identifier.spage 923 en
dc.identifier.epage 933 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής