HEAL DSpace

Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannakoglou, KC en
dc.contributor.author Papadimitriou, DI en
dc.contributor.author Kampolis, IC en
dc.date.accessioned 2014-03-01T01:23:33Z
dc.date.available 2014-03-01T01:23:33Z
dc.date.issued 2006 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17014
dc.subject Adjoint formulation en
dc.subject Aerodynamics en
dc.subject Artificial neural networks en
dc.subject Evolutionary algorithms en
dc.subject Shape optimization en
dc.subject Turbomachinery en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Compressible flow en
dc.subject.other Evolutionary algorithms en
dc.subject.other Multilayer neural networks en
dc.subject.other Optimization en
dc.subject.other Radial basis function networks en
dc.subject.other Turbomachinery en
dc.subject.other Adjoint formulation en
dc.subject.other Metamodels en
dc.subject.other Shape design en
dc.subject.other Shape optimization en
dc.subject.other Aerodynamics en
dc.subject.other Aerodynamics en
dc.subject.other Compressible flow en
dc.subject.other Evolutionary algorithms en
dc.subject.other Multilayer neural networks en
dc.subject.other Optimization en
dc.subject.other Radial basis function networks en
dc.subject.other Turbomachinery en
dc.title Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2005.12.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2005.12.008 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Aerodynamic shape design and optimization problems based on evolutionary algorithms and surrogate evaluation tools, i.e., the so-called metamodels, have recently found widespread use. Using metamodels, trained either separately from or during the optimization loop, a considerable reduction in the overall computing cost can be achieved. To support metamodel-based evolutionary algorithms, a class of new metamodels which utilize both known responses and response gradients for their training is proposed. The new gradient-assisted metamodels are extensions of standard multi-layer perceptrons and radial basis function networks. To demonstrate the prediction capabilities of the proposed metamodels and investigate different implementation modes within search algorithms along with the relevant CPU cost, a number of 2D and 3D aerodynamic shape (namely airfoils and turbomachinery blades) design problems are analyzed. Single- and two-objective problems, aiming at designing shapes that reproduce known pressure distributions at specific operating points, are considered. The exact evaluation tool is a numerical solver of the compressible fluid flow equations. The necessary gradient of the objective function is obtained by formulating and numerically solving adjoint equations. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2005.12.008 en
dc.identifier.isi ISI:000239680100027 en
dc.identifier.volume 195 en
dc.identifier.issue 44-47 en
dc.identifier.spage 6312 en
dc.identifier.epage 6329 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής