dc.contributor.author |
Giannakoglou, KC |
en |
dc.contributor.author |
Papadimitriou, DI |
en |
dc.contributor.author |
Kampolis, IC |
en |
dc.date.accessioned |
2014-03-01T01:23:33Z |
|
dc.date.available |
2014-03-01T01:23:33Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17014 |
|
dc.subject |
Adjoint formulation |
en |
dc.subject |
Aerodynamics |
en |
dc.subject |
Artificial neural networks |
en |
dc.subject |
Evolutionary algorithms |
en |
dc.subject |
Shape optimization |
en |
dc.subject |
Turbomachinery |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Turbomachinery |
en |
dc.subject.other |
Adjoint formulation |
en |
dc.subject.other |
Metamodels |
en |
dc.subject.other |
Shape design |
en |
dc.subject.other |
Shape optimization |
en |
dc.subject.other |
Aerodynamics |
en |
dc.subject.other |
Aerodynamics |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Turbomachinery |
en |
dc.title |
Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cma.2005.12.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cma.2005.12.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Aerodynamic shape design and optimization problems based on evolutionary algorithms and surrogate evaluation tools, i.e., the so-called metamodels, have recently found widespread use. Using metamodels, trained either separately from or during the optimization loop, a considerable reduction in the overall computing cost can be achieved. To support metamodel-based evolutionary algorithms, a class of new metamodels which utilize both known responses and response gradients for their training is proposed. The new gradient-assisted metamodels are extensions of standard multi-layer perceptrons and radial basis function networks. To demonstrate the prediction capabilities of the proposed metamodels and investigate different implementation modes within search algorithms along with the relevant CPU cost, a number of 2D and 3D aerodynamic shape (namely airfoils and turbomachinery blades) design problems are analyzed. Single- and two-objective problems, aiming at designing shapes that reproduce known pressure distributions at specific operating points, are considered. The exact evaluation tool is a numerical solver of the compressible fluid flow equations. The necessary gradient of the objective function is obtained by formulating and numerically solving adjoint equations. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/j.cma.2005.12.008 |
en |
dc.identifier.isi |
ISI:000239680100027 |
en |
dc.identifier.volume |
195 |
en |
dc.identifier.issue |
44-47 |
en |
dc.identifier.spage |
6312 |
en |
dc.identifier.epage |
6329 |
en |