dc.contributor.author |
Lambropoulou, S |
en |
dc.contributor.author |
Rourke, CP |
en |
dc.date.accessioned |
2014-03-01T01:23:33Z |
|
dc.date.available |
2014-03-01T01:23:33Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0010-437X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17015 |
|
dc.subject |
Braid equivalence |
en |
dc.subject |
Combed band move |
en |
dc.subject |
Knot complements |
en |
dc.subject |
Markov equivalence |
en |
dc.subject |
Mixed braids |
en |
dc.subject |
Mixed links |
en |
dc.subject |
Three-manifolds |
en |
dc.subject |
Twisted conjugation |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
KNOT-THEORY |
en |
dc.title |
Algebraic Markov equivalence for links in three-manifolds |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1112/S0010437X06002144 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1112/S0010437X06002144 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Let B-n denote the classical braid group on n strands and let the mixed braid group B-m,B-n be the subgroup of Bm+n comprising braids for which the first m strands form the identity braid. Let B-m,B-infinity = boolean OR(n) B-m,B-n. We describe explicit algebraic moves on B-m,B-infinity such that equivalence classes under these moves classify oriented links up to isotopy in a link complement or in a closed, connected, oriented three-manifold. The moves depend on a fixed link representing the manifold in S-3. More precisely, for link complements the moves are the two familiar moves of the classical Markov equivalence together with 'twisted' conjugation by certain loops a(i). This means premultiplication by a(i)(-1) and postmultiplication by a 'combed' version of a(i). For closed three-manifolds there is an additional set of 'combed' band moves that correspond to sliding moves over the surgery link. The main tool in the proofs is the one-move Markov theorem using L-moves (adding in-box crossings). The resulting algebraic classification is a direct extension of the classical Markov theorem that classifies links in S-3 up to isotopy, and potentially leads to powerful new link invariants, which have been explored in special cases by the first author. It also provides a controlled range of isotopy moves, useful for studying skein modules of three-manifolds. |
en |
heal.publisher |
LONDON MATH SOC |
en |
heal.journalName |
Compositio Mathematica |
en |
dc.identifier.doi |
10.1112/S0010437X06002144 |
en |
dc.identifier.isi |
ISI:000239834100010 |
en |
dc.identifier.volume |
142 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1039 |
en |
dc.identifier.epage |
1062 |
en |