HEAL DSpace

Algebraic Markov equivalence for links in three-manifolds

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lambropoulou, S en
dc.contributor.author Rourke, CP en
dc.date.accessioned 2014-03-01T01:23:33Z
dc.date.available 2014-03-01T01:23:33Z
dc.date.issued 2006 en
dc.identifier.issn 0010-437X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17015
dc.subject Braid equivalence en
dc.subject Combed band move en
dc.subject Knot complements en
dc.subject Markov equivalence en
dc.subject Mixed braids en
dc.subject Mixed links en
dc.subject Three-manifolds en
dc.subject Twisted conjugation en
dc.subject.classification Mathematics en
dc.subject.other KNOT-THEORY en
dc.title Algebraic Markov equivalence for links in three-manifolds en
heal.type journalArticle en
heal.identifier.primary 10.1112/S0010437X06002144 en
heal.identifier.secondary http://dx.doi.org/10.1112/S0010437X06002144 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Let B-n denote the classical braid group on n strands and let the mixed braid group B-m,B-n be the subgroup of Bm+n comprising braids for which the first m strands form the identity braid. Let B-m,B-infinity = boolean OR(n) B-m,B-n. We describe explicit algebraic moves on B-m,B-infinity such that equivalence classes under these moves classify oriented links up to isotopy in a link complement or in a closed, connected, oriented three-manifold. The moves depend on a fixed link representing the manifold in S-3. More precisely, for link complements the moves are the two familiar moves of the classical Markov equivalence together with 'twisted' conjugation by certain loops a(i). This means premultiplication by a(i)(-1) and postmultiplication by a 'combed' version of a(i). For closed three-manifolds there is an additional set of 'combed' band moves that correspond to sliding moves over the surgery link. The main tool in the proofs is the one-move Markov theorem using L-moves (adding in-box crossings). The resulting algebraic classification is a direct extension of the classical Markov theorem that classifies links in S-3 up to isotopy, and potentially leads to powerful new link invariants, which have been explored in special cases by the first author. It also provides a controlled range of isotopy moves, useful for studying skein modules of three-manifolds. en
heal.publisher LONDON MATH SOC en
heal.journalName Compositio Mathematica en
dc.identifier.doi 10.1112/S0010437X06002144 en
dc.identifier.isi ISI:000239834100010 en
dc.identifier.volume 142 en
dc.identifier.issue 4 en
dc.identifier.spage 1039 en
dc.identifier.epage 1062 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής