dc.contributor.author |
Patermarakis, G |
en |
dc.date.accessioned |
2014-03-01T01:23:33Z |
|
dc.date.available |
2014-03-01T01:23:33Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1432-8488 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17019 |
|
dc.subject |
Chronopotentiometry and overall kinetics |
en |
dc.subject |
Growth mechanism and nanostructure |
en |
dc.subject |
Interface colloidal Al 2(SO4)3 |
en |
dc.subject |
Low acidity sulphate baths |
en |
dc.subject |
Porous anodic aluminas |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Anodic oxidation |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Porous materials |
en |
dc.subject.other |
Supersaturation |
en |
dc.subject.other |
Thick films |
en |
dc.subject.other |
Chronopotentiometry and overall kinetics |
en |
dc.subject.other |
Growth mechanism and nanostructure |
en |
dc.subject.other |
Interface colloidal Al (SO) |
en |
dc.subject.other |
Low acidity sulphate baths |
en |
dc.subject.other |
Porous anodic alumina |
en |
dc.subject.other |
Film growth |
en |
dc.title |
Aluminium anodising in low acidity sulphate baths: Growth mechanism and nanostructure of porous anodic films |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10008-005-0665-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10008-005-0665-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Overall kinetic and chronopotentiometric studies were performed during Al anodising in H2SO4, 0-5% w/v, bath solutions pure and saturated by Al-2(SO4)(3). Peculiarities in film growth mechanism and nanostructure in these cases appeared, like significant differences of porosity and its dependence on film thickness, different critical current density above which pitting appears, salt deposition on pitted surface regions in saturated bath, etc. The different conditions inside pores are responsible for this behaviour like almost depletion of H+ during a long initial transient stage in the first case, supersaturation and formation of Al-2(SO4)(3) nanoparticle micelles on pore surface in the second case, etc. Differences in film growth mechanism also appeared between these and alike baths at higher acidity. Anodising in low acidity saturated baths shows superiority for growing low porosity films at specific conditions. New technologies may be suggested to produce optimal films of desired structure. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Solid State Electrochemistry |
en |
dc.identifier.doi |
10.1007/s10008-005-0665-7 |
en |
dc.identifier.isi |
ISI:000235126700004 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
211 |
en |
dc.identifier.epage |
222 |
en |