dc.contributor.author |
Siettos, CI |
en |
dc.contributor.author |
Kevrekidis, IG |
en |
dc.contributor.author |
Kazantzis, N |
en |
dc.date.accessioned |
2014-03-01T01:23:34Z |
|
dc.date.available |
2014-03-01T01:23:34Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0218-1274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17026 |
|
dc.subject |
Equation-free |
en |
dc.subject |
Feedback linearization |
en |
dc.subject |
Microscopic/stochastic systems |
en |
dc.subject |
Nonlinear control |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Multidisciplinary Sciences |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Equation-free |
en |
dc.subject.other |
Feedback linearization |
en |
dc.subject.other |
Microscopic/stochastic systems |
en |
dc.subject.other |
Nonlinear control |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.title |
An equation-free approach to nonlinear control: Coarse feedback linearization with pole-placement |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218127406015878 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218127406015878 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We present an application of equation-free computation to the coarse-grained feedback linearization problem of nonlinear systems described by microscopic/stochastic simulators. Feedback linearization with pole placement requires the solution of a functional equation involving the macroscopic (coarse-grained) system model. In the absence of such a closed-form model, short, appropriately initialized bursts of microscopic simulation are designed and performed, and their results used to estimate on demand the quantities required for the numerical solution of the (explicitly unavailable) functional equation. Our illustrative example is a kinetic Monte Carlo realization of a simplified heterogeneous catalytic reaction scheme. © World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Bifurcation and Chaos |
en |
dc.identifier.doi |
10.1142/S0218127406015878 |
en |
dc.identifier.isi |
ISI:000240860400011 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
2029 |
en |
dc.identifier.epage |
2041 |
en |