HEAL DSpace

An object-oriented methodology to detect oil spills

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karathanassi, V en
dc.contributor.author Topouzelis, K en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T01:23:34Z
dc.date.available 2014-03-01T01:23:34Z
dc.date.issued 2006 en
dc.identifier.issn 0143-1161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17032
dc.subject Object Oriented en
dc.subject Oil Spill en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Fuzzy systems en
dc.subject.other Image resolution en
dc.subject.other Image segmentation en
dc.subject.other Radar imaging en
dc.subject.other Remote sensing en
dc.subject.other Synthetic aperture radar en
dc.subject.other Fuzzy classification method en
dc.subject.other High-resolution image en
dc.subject.other Oil spill detection en
dc.subject.other Oil spills en
dc.subject.other accuracy assessment en
dc.subject.other detection method en
dc.subject.other empirical analysis en
dc.subject.other fuzzy mathematics en
dc.subject.other image analysis en
dc.subject.other image resolution en
dc.subject.other oil spill en
dc.subject.other synthetic aperture radar en
dc.title An object-oriented methodology to detect oil spills en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431160600693575 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431160600693575 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A new automated methodology for oil spill detection is presented, by which full synthetic aperture radar (SAR) high-resolution image scenes can be processed. The methodology relies on the object-oriented approach and profits from image segmentation techniques to detected dark formations. The detection of dark formations is based on a threshold definition that is fully adaptive to local contrast and brightness of large image segments. For the detection process, two empirical formulas are developed that also permit the classification of oil spills according to their brightness. A fuzzy classification method is used to classify dark formations as oil spills or look-alikes. Dark formations are not isolated and features of both dark areas and sea environment are considered. Various sea environments that affect oil spill shape and boundaries are grouped in two knowledge bases, used for the classification of dark formations. The accuracy of the method for the 12 SAR images used is 99.5% for the class of oil spills, and 98.8% for that of look-alikes. Fresh oil spills, fresh spills affected by natural phenomena, oil spills without clear stripping, small linear oil spills, oil spills with broken parts and amorphous oil spills can be successfully detected. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431160600693575 en
dc.identifier.isi ISI:000244182300007 en
dc.identifier.volume 27 en
dc.identifier.issue 23 en
dc.identifier.spage 5235 en
dc.identifier.epage 5251 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής