HEAL DSpace

An optimized adaptive neural network for annual midterm energy forecasting

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, GJ en
dc.contributor.author Hatziargyriou, ND en
dc.contributor.author Dialynas, EN en
dc.date.accessioned 2014-03-01T01:23:35Z
dc.date.available 2014-03-01T01:23:35Z
dc.date.issued 2006 en
dc.identifier.issn 0885-8950 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17034
dc.subject Adaptive artificial neural network (ANN) en
dc.subject Energy forecasting en
dc.subject Optimization of ANN parameters en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Data processing en
dc.subject.other Electric load management en
dc.subject.other Flowcharting en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Regression analysis en
dc.subject.other Sensitivity analysis en
dc.subject.other Adaptive artificial neural network en
dc.subject.other Energy forecasting en
dc.subject.other Input variables en
dc.subject.other Standard regression methods en
dc.subject.other Electric industry en
dc.title An optimized adaptive neural network for annual midterm energy forecasting en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPWRS.2005.860926 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPWRS.2005.860926 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The objective of this paper is to present a new methodology for midterm energy forecasting. The proposed model is an adaptive artificial neural network (ANN), which properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set. The ANN parameters, such as the finally used input variables, the number of neurons, initial values, and time periods of momentum term and training rate, are simultaneously selected by an optimization process. Another characteristic of the model is the use of a minimal training set of patterns. Results from an extensive analysis conducted by the developed method for the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Power Systems en
dc.identifier.doi 10.1109/TPWRS.2005.860926 en
dc.identifier.isi ISI:000235017000046 en
dc.identifier.volume 21 en
dc.identifier.issue 1 en
dc.identifier.spage 385 en
dc.identifier.epage 391 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής