dc.contributor.author |
Tsekouras, GJ |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.contributor.author |
Dialynas, EN |
en |
dc.date.accessioned |
2014-03-01T01:23:35Z |
|
dc.date.available |
2014-03-01T01:23:35Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0885-8950 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17034 |
|
dc.subject |
Adaptive artificial neural network (ANN) |
en |
dc.subject |
Energy forecasting |
en |
dc.subject |
Optimization of ANN parameters |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
Electric load management |
en |
dc.subject.other |
Flowcharting |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Adaptive artificial neural network |
en |
dc.subject.other |
Energy forecasting |
en |
dc.subject.other |
Input variables |
en |
dc.subject.other |
Standard regression methods |
en |
dc.subject.other |
Electric industry |
en |
dc.title |
An optimized adaptive neural network for annual midterm energy forecasting |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPWRS.2005.860926 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPWRS.2005.860926 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The objective of this paper is to present a new methodology for midterm energy forecasting. The proposed model is an adaptive artificial neural network (ANN), which properly transforms the input variables to differences or relative differences, in order to predict energy values not included in the training set. The ANN parameters, such as the finally used input variables, the number of neurons, initial values, and time periods of momentum term and training rate, are simultaneously selected by an optimization process. Another characteristic of the model is the use of a minimal training set of patterns. Results from an extensive analysis conducted by the developed method for the Greek power system and for different categories of customers are compared to those obtained from the application of standard regression methods. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Power Systems |
en |
dc.identifier.doi |
10.1109/TPWRS.2005.860926 |
en |
dc.identifier.isi |
ISI:000235017000046 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
385 |
en |
dc.identifier.epage |
391 |
en |