HEAL DSpace

Analysis of mean and mean square response of general linear stochastic finite element systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Papadrakakis, M en
dc.contributor.author Deodatis, G en
dc.date.accessioned 2014-03-01T01:23:36Z
dc.date.available 2014-03-01T01:23:36Z
dc.date.issued 2006 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17039
dc.subject Mean response function en
dc.subject Monte Carlo simulation en
dc.subject Non-homogeneous stochastic fields en
dc.subject Stochastic finite element analysis en
dc.subject Upper bounds en
dc.subject Variability response function en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Approximation theory en
dc.subject.other Computer simulation en
dc.subject.other Monte Carlo methods en
dc.subject.other Probability density function en
dc.subject.other Random processes en
dc.subject.other Non-homogeneous stochastic fields en
dc.subject.other Stochastic finite element analysis en
dc.subject.other Upper bounds en
dc.subject.other Variability response function en
dc.subject.other Finite element method en
dc.subject.other Approximation theory en
dc.subject.other Computer simulation en
dc.subject.other Finite element method en
dc.subject.other Monte Carlo methods en
dc.subject.other Probability density function en
dc.subject.other Random processes en
dc.title Analysis of mean and mean square response of general linear stochastic finite element systems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2005.11.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2005.11.008 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A general finite element-based formulation is presented for the analysis of the mean and mean square response of stochastic structural systems whose material properties are described by random fields. A flexibility-based formulation is followed that does not involve any approximations. Closed-formed integral expressions for the mean and mean square value of the response displacement of statically indeterminate stochastic structures are introduced in this paper. These integral expressions involve the spectral density function of a stochastic field modeling the uncertain material properties and two new quantities named the mean response function (MRF) and the variability response function for the mean square response (VRFI). The MRF and the VRF1 have many similarities with the classical variability response function (VRF) used to estimate the variance of the response displacement. The existence of the MRF and the VRF1 depends on a conjecture that is validated numerically using a brute force Monte Carlo simulation approach. A so-called finite element method-based fast Monte Carlo simulation procedure (FEM-FMCS) is introduced for the accurate and efficient numerical evaluation of the MRF and the VRF1. This methodology is established for the analysis of stochastic beam/frame structures, as well as for more general stochastic finite element systems (i.e., plane stress and shell problems). Numerical examples are provided including-a statically indeterminate beam, a plane stress problem and a shell structure. The MRF and VRF1 are used to perform sensitivity/parametric analyses with respect to various probabilistic characteristics involved in the problem (i.e., correlation distance, standard deviation) and to establish realizable upper bounds on the mean value of the response displacement. Throughout this paper, the VRF is computed in parallel to the MRF and the VRF I. It should be noted that although the concept of the VRF has been introduced in an earlier work, this is the first time that a flexibility-based approach has been used to estimate the VRF for two-dimensional problems. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2005.11.008 en
dc.identifier.isi ISI:000239190500011 en
dc.identifier.volume 195 en
dc.identifier.issue 41-43 en
dc.identifier.spage 5454 en
dc.identifier.epage 5471 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής