HEAL DSpace

Analytic parametric solutions for the HRR nonlinear elastic field with low hardening exponents

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sotiropoulou, A en
dc.contributor.author Panayotounakou, N en
dc.contributor.author Panayotounakos, D en
dc.date.accessioned 2014-03-01T01:23:36Z
dc.date.available 2014-03-01T01:23:36Z
dc.date.issued 2006 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17043
dc.subject Asymptotic Solution en
dc.subject Nonlinear Elasticity en
dc.subject Normal Form en
dc.subject Ordinary Differential Equation en
dc.subject Strain Hardening en
dc.subject Second Order en
dc.subject.classification Mechanics en
dc.subject.other Asymptotic solutions en
dc.subject.other Hardening exponents en
dc.subject.other Nonlinear elastic (plastic) fractures en
dc.subject.other Ordinary differential equation (ODE) en
dc.subject.other Differential equations en
dc.subject.other Fracture en
dc.subject.other Nonlinear equations en
dc.subject.other Plasticity en
dc.subject.other Rigidity en
dc.subject.other Strain hardening en
dc.subject.other Elasticity en
dc.title Analytic parametric solutions for the HRR nonlinear elastic field with low hardening exponents en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-006-0315-x en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-006-0315-x en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, we restore the already constructed approximate asymptotic solutions extracted in [10] concerning the HRR [1] strongly nonlinear fourth-order ordinary differential equation (ODE) for plane strain conditions in nonlinear elastic (plastic) fracture. It is proved that the above equation, for low strain hardening exponents (0 < N << 1), is reduced to a strongly nonlinear ODE of the second order. The method of the total differentials is used so that the last equation is reduced to Abels' equations of the second kind of the normal form, that can be analytically solved in parametric form. In addition, the case of rigid perfect-plasticity (N=0) is extensively investigated and several important results are extracted. en
heal.publisher SPRINGER WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-006-0315-x en
dc.identifier.isi ISI:000238019800005 en
dc.identifier.volume 183 en
dc.identifier.issue 3-4 en
dc.identifier.spage 209 en
dc.identifier.epage 230 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής