dc.contributor.author |
Kouzas, G |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.contributor.author |
Loumos, V |
en |
dc.date.accessioned |
2014-03-01T01:23:37Z |
|
dc.date.available |
2014-03-01T01:23:37Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
15715736 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17050 |
|
dc.subject |
Ant Colony |
en |
dc.subject |
Document Similarity |
en |
dc.subject |
Information Retrieval |
en |
dc.subject |
Web Search |
en |
dc.subject |
Ant Colony Optimization Algorithm |
en |
dc.title |
Ant seeker: An algorithm for enhanced web search |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/0-387-34224-9_76 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/0-387-34224-9_76 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper proposes a web search algorithm, which aims to distinguish irrelevant information and to enhance the amount of the relevant information in respect to a user's query. The proposed algorithm is based on the Ant Colony Optimization algorithm (ACO), employing in parallel document similarity issues from the field of information retrieval. Ant Colony Optimization algorithms were inspired through the observation of ant colonies. In our approach, ants are used as agents through Internet, which are capable of collecting information, calculating the content similarity in each visited node and generating routing paths through the web. © 2006 International Federation for Information Processing. |
en |
heal.journalName |
IFIP International Federation for Information Processing |
en |
dc.identifier.doi |
10.1007/0-387-34224-9_76 |
en |
dc.identifier.volume |
204 |
en |
dc.identifier.spage |
649 |
en |
dc.identifier.epage |
656 |
en |