HEAL DSpace

Artificial neural networks and high and low flows in various climate regimes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagoulia, D en
dc.date.accessioned 2014-03-01T01:23:38Z
dc.date.available 2014-03-01T01:23:38Z
dc.date.issued 2006 en
dc.identifier.issn 0262-6667 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17060
dc.subject Artificial neural network en
dc.subject Conceptual modelling en
dc.subject High flows en
dc.subject Linear least squares en
dc.subject Low flows en
dc.subject Simplex optimization en
dc.subject.classification Water Resources en
dc.subject.other Algorithms en
dc.subject.other Catchments en
dc.subject.other Computer simulation en
dc.subject.other Feedforward neural networks en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Precipitation (meteorology) en
dc.subject.other Statistical methods en
dc.subject.other Conceptual modelling en
dc.subject.other High flows en
dc.subject.other Linear least squares en
dc.subject.other Low flows en
dc.subject.other Simplex optimization en
dc.subject.other Climatology en
dc.subject.other algorithm en
dc.subject.other artificial neural network en
dc.subject.other catchment en
dc.subject.other climate modeling en
dc.subject.other conceptual framework en
dc.subject.other flow modeling en
dc.subject.other least squares method en
dc.subject.other linearity en
dc.subject.other optimization en
dc.subject.other precipitation assessment en
dc.subject.other Eurasia en
dc.subject.other Europe en
dc.subject.other Greece en
dc.subject.other Southern Europe en
dc.title Artificial neural networks and high and low flows in various climate regimes en
heal.type journalArticle en
heal.identifier.primary 10.1623/hysj.51.4.563 en
heal.identifier.secondary http://dx.doi.org/10.1623/hysj.51.4.563 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract An algorithm coupling linear least squares and simplex optimization (LLSSIM) is used to examine the ability of a three-layer feedforward artificial neural network (ANN) to simulate the high and low flows in various climate regimes over a mountainous catchment (the Mesochora catchment in central Greece). The plot of the long-term annual catchment pseudo-precipitation (rain plus snowmelt) simulated by the snow accumulation and ablation model (SAA) of the US National Weather Service (US NWS) showed trends of three climatically distinct periods, described by clearly descending, rising and moderately descending segments in pseudo-precipitation. The ANN model was calibrated for each of the three climate types and each was validated against the others. A set of statistical measures and graphs adapted for high and low flows showed the robustness of the ANN model under various climates and transient conditions. The ANN model proved capable of simulating well the daily high and low flows when it is calibrated for increasing pseudo-precipitation and validated for moderately decreasing pseudo-precipitation. For the entire period, the ANN model provided a better simulation of high and low flows than the conceptual soil moisture accounting (SMA) model of the US NWS, which was also employed in this study. Because the ANN is not a physically-based model, it is by no means a substitute for the SMA model. However, it is concluded that the ANN approach is an effective alternative for daily high- and low-flow simulation and forecasting in climatically varied regimes, particularly in cases where the internal dynamics of the catchment do not require an explicit representation. Copyright © 2006 IAHS Press. en
heal.publisher IAHS PRESS, INST HYDROLOGY en
heal.journalName Hydrological Sciences Journal en
dc.identifier.doi 10.1623/hysj.51.4.563 en
dc.identifier.isi ISI:000239562700001 en
dc.identifier.volume 51 en
dc.identifier.issue 4 en
dc.identifier.spage 563 en
dc.identifier.epage 587 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής