dc.contributor.author |
Keramitsoglou, I |
en |
dc.contributor.author |
Cartalis, C |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.date.accessioned |
2014-03-01T01:23:39Z |
|
dc.date.available |
2014-03-01T01:23:39Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
1364-8152 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17070 |
|
dc.subject |
Fuzzy logic |
en |
dc.subject |
Marine pollution |
en |
dc.subject |
Oil spills |
en |
dc.subject |
Remote sensing |
en |
dc.subject |
SAR |
en |
dc.subject |
Sea surface |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Encoding (symbols) |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Marine pollution |
en |
dc.subject.other |
Remote sensing |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Synthetic aperture radar |
en |
dc.subject.other |
Dynamic link library (dll) |
en |
dc.subject.other |
MS Visual C++ |
en |
dc.subject.other |
Satellite images |
en |
dc.subject.other |
Sea surface |
en |
dc.subject.other |
Oil spills |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
decision making |
en |
dc.subject.other |
oil spill |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite imagery |
en |
dc.subject.other |
sea surface |
en |
dc.subject.other |
Aegean Sea |
en |
dc.subject.other |
Eurasia |
en |
dc.subject.other |
Europe |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Mediterranean Sea |
en |
dc.subject.other |
Southern Europe |
en |
dc.title |
Automatic identification of oil spills on satellite images |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.envsoft.2004.11.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.envsoft.2004.11.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A fully automated system for the identification of possible oil spills present on Synthetic Aperture Radar (SAR) satellite images based on artificial intelligence fuzzy logic has been developed. Oil spills are recognized by experts as dark patterns of characteristic shape, in particular context. The system analyzes the satellite images and assigns the probability of a dark image shape to be an oil spill. The output consists of several images and tables providing the user with all relevant information for decision-making. The case study area was the Aegean Sea in Greece. The system responded very satisfactorily for all 35 images processed. The complete algorithmic procedure was coded in MS Visual C++ 6.0 in a stand-alone dynamic link library (dll) to be linked with any sort of application under any variant of MS Windows operating system. (c) 2004 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Environmental Modelling and Software |
en |
dc.identifier.doi |
10.1016/j.envsoft.2004.11.010 |
en |
dc.identifier.isi |
ISI:000237770000005 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
640 |
en |
dc.identifier.epage |
652 |
en |