HEAL DSpace

Bayesian network approach for gas path fault diagnosis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Romessis, C en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T01:23:40Z
dc.date.available 2014-03-01T01:23:40Z
dc.date.issued 2006 en
dc.identifier.issn 0742-4795 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17073
dc.subject Fault Diagnosis en
dc.subject bayesian network en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Expert systems en
dc.subject.other Fault tolerant computer systems en
dc.subject.other Mathematical models en
dc.subject.other Probability en
dc.subject.other Random processes en
dc.subject.other Turbofan engines en
dc.subject.other Bayesian belief network en
dc.subject.other Benchmark fault en
dc.subject.other Deterministic model en
dc.subject.other Gas path fault diagnosis en
dc.subject.other Jet engines en
dc.subject.other Expert systems en
dc.subject.other Fault tolerant computer systems en
dc.subject.other Jet engines en
dc.subject.other Mathematical models en
dc.subject.other Probability en
dc.subject.other Random processes en
dc.subject.other Turbofan engines en
dc.title Bayesian network approach for gas path fault diagnosis en
heal.type journalArticle en
heal.identifier.primary 10.1115/1.1924536 en
heal.identifier.secondary http://dx.doi.org/10.1115/1.1924536 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A method for solving the gas path analysis problem of jet engine diagnostics based on a probabilistic approach is presented. The method is materialized through the use of a Bayesian Belief Network (BBN). Building a BBN for gas turbine performance fault diagnosis requires information of a stochastic nature expressing the probability of whether a series of events occurred or not. This information can be extracted by a deterministic model and does not depend on hard to find flight data of different faulty operations of the engine. The diagnostic problem and the overall diagnostic procedure are first described. A detailed description of the way the diagnostic procedure is set-up, with focus on building the BBN from an engine performance model, follows. The case of a turbofan engine is used to evaluate the effectiveness of the method. Several simulated and benchmark fault case scenarios have been considered for this reason. The examined cases demonstrate that the proposed BBN-based diagnostic method composes a powerful tool. This work also shows that building a diagnostic tool, based on information provided by an engine performance model, is feasible and can be efficient as well. Copyright © 2006 by ASME. en
heal.publisher ASME-AMER SOC MECHANICAL ENG en
heal.journalName Journal of Engineering for Gas Turbines and Power en
dc.identifier.doi 10.1115/1.1924536 en
dc.identifier.isi ISI:000234192600009 en
dc.identifier.volume 128 en
dc.identifier.issue 1 en
dc.identifier.spage 64 en
dc.identifier.epage 72 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής