dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:23:42Z |
|
dc.date.available |
2014-03-01T01:23:42Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0168-0072 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17101 |
|
dc.subject |
Baire class one functions |
en |
dc.subject |
Pointwise convergent sequences |
en |
dc.subject |
Separable compacta |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ANALYTIC SETS |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
CLASSIFICATION |
en |
dc.title |
Codings of separable compact subsets of the first Baire class |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apal.2006.05.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apal.2006.05.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Let X be a Polish space and kappa a separable compact subset of the first Baire class on X. For every sequence f = (f(n))(n) dense in kappa, the descriptive set-theoretic properties of the set L-f = {L epsilon [N] : (f(n))(n epsilon L) is pointwise convergent} are analyzed. It is shown that if kappa is not first countable, then L-f is Pi(1)(1)-complete. This can also happen even if kappa is a pre-metric compactum of degree at most two, in the sense of S. Todorcevic. However, if kappa is of degree exactly two, then Lf is always Borel. A deep result of G. Debs implies that L-f contains a Borel cofinal set and this gives a tree-representation of kappa. We show that classical ordinal assignments of Baire-1 functions are actually Pi(1)(1)-ranks on kappa. We also provide an example of a Sigma(1)(1) Ramsey-null subset A of [N] for which there does not exist a Borel set B superset of A such that the difference B\A is Ramsey-null. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Annals of Pure and Applied Logic |
en |
dc.identifier.doi |
10.1016/j.apal.2006.05.006 |
en |
dc.identifier.isi |
ISI:000240217700018 |
en |
dc.identifier.volume |
142 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
425 |
en |
dc.identifier.epage |
441 |
en |