HEAL DSpace

Comparison of recent methods for inference of variable influence in neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadokonstantakis, S en
dc.contributor.author Lygeros, A en
dc.contributor.author Jacobsson, SP en
dc.date.accessioned 2014-03-01T01:23:43Z
dc.date.available 2014-03-01T01:23:43Z
dc.date.issued 2006 en
dc.identifier.issn 0893-6080 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17112
dc.subject Automatic relevance determination en
dc.subject General influence measure en
dc.subject Information theoretic approach en
dc.subject Sensitivity analysis en
dc.subject Sequential zeroing of weights en
dc.subject Variable influence in neural networks en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Database systems en
dc.subject.other Information theory en
dc.subject.other Mathematical models en
dc.subject.other Sensitivity analysis en
dc.subject.other Automatic relevance determination en
dc.subject.other General influence measure en
dc.subject.other Information theoretic approach en
dc.subject.other Sequential zeroing of weights en
dc.subject.other Variable influence in neural networks en
dc.subject.other Neural networks en
dc.subject.other accuracy en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other Bayes theorem en
dc.subject.other information science en
dc.subject.other intermethod comparison en
dc.subject.other mathematical computing en
dc.subject.other mathematical model en
dc.subject.other noise en
dc.subject.other priority journal en
dc.subject.other Algorithms en
dc.subject.other Animals en
dc.subject.other Artificial Intelligence en
dc.subject.other Bayes Theorem en
dc.subject.other Computer Simulation en
dc.subject.other Humans en
dc.subject.other Logistic Models en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Pattern Recognition, Automated en
dc.title Comparison of recent methods for inference of variable influence in neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.neunet.2005.09.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.neunet.2005.09.002 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Neural networks (NNs) belong to 'black box' models and therefore 'suffer' from interpretation difficulties. Four recent methods inferring variable influence in NNs are compared in this paper. The methods assist the interpretation task during different phases of the modeling procedure. They belong to information theory (ITSS), the Bayesian framework (ARD), the analysis of the network's weights (GIM), and the sequential omission of the variables (SZW). The comparison is based upon artificial and real data sets of differing size, complexity and noise level. The influence of the neural network's size has also been considered. The results provide useful information about the agreement between the methods under different conditions. Generally, SZW and GIM differ from ARD regarding the variable influence, although applied to NNs with similar modeling accuracy, even when larger data sets sizes are used. ITSS produces similar results to SZW and GIM, although suffering more from the,curse of dimensionality'. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Neural Networks en
dc.identifier.doi 10.1016/j.neunet.2005.09.002 en
dc.identifier.isi ISI:000238884300013 en
dc.identifier.volume 19 en
dc.identifier.issue 4 en
dc.identifier.spage 500 en
dc.identifier.epage 513 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής