HEAL DSpace

Computationally efficient sup-t transitive closure for sparse fuzzy binary relations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wallace, M en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:23:43Z
dc.date.available 2014-03-01T01:23:43Z
dc.date.issued 2006 en
dc.identifier.issn 0165-0114 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17115
dc.subject Complexity en
dc.subject Fuzzy partial ordering relations en
dc.subject Sparse matrix en
dc.subject Transitive closure en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.subject.other Algorithms en
dc.subject.other Computation theory en
dc.subject.other Computational complexity en
dc.subject.other Information theory en
dc.subject.other Complexity en
dc.subject.other Fuzzy partial ordering relations en
dc.subject.other Sparse matrix en
dc.subject.other Transitive closure en
dc.subject.other Fuzzy sets en
dc.title Computationally efficient sup-t transitive closure for sparse fuzzy binary relations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.fss.2005.06.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.fss.2005.06.005 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The property of transitivity is one of the most important for fuzzy binary relations, especially in the cases when they are used for the representation of real-life similarity or ordering information. As far as the algorithmic part of the actual calculation of the transitive closure of such relations is concerned, works in the literature mainly focus on crisp symmetric relations, paying little attention to the case of general fuzzy binary relations. Most works that deal with the algorithmic part of the transitive closure of fuzzy relations focus only on the case of max-min transitivity, disregarding other types of transitivity. In this paper, after formalizing the notion of sparseness and providing a representation model for sparse relations that displays both computational and storage merits, we propose an algorithm for the incremental update of fuzzy sup-t transitive relations. The incremental transitive update (ITU) algorithm achieves the re-establishment of transitivity when an already transitive relation is only locally disturbed. Based on this algorithm, we propose an extension to handle the sup-t transitive closure of any fuzzy binary relation, through a novel incremental transitive closure (ITC) algorithm. The ITU and ITC algorithms can be applied on any fuzzy binary relation and t-norm; properties such as reflexivity, symmetricity and idempotency are not a requirement. Under the specified assumptions for the average sparse relation, both of the proposed algorithms have considerably smaller computational complexity than the conventional approach; this is established both theoretically and verified via appropriate computing experiments. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Fuzzy Sets and Systems en
dc.identifier.doi 10.1016/j.fss.2005.06.005 en
dc.identifier.isi ISI:000233696300002 en
dc.identifier.volume 157 en
dc.identifier.issue 3 en
dc.identifier.spage 341 en
dc.identifier.epage 372 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής