HEAL DSpace

Computer aided diagnosis based on medical image processing and artificial intelligence methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stoitsis, J en
dc.contributor.author Valavanis, I en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Golemati, S en
dc.contributor.author Nikita, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:23:43Z
dc.date.available 2014-03-01T01:23:43Z
dc.date.issued 2006 en
dc.identifier.issn 0168-9002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17116
dc.subject Atherosclerosis en
dc.subject Computer Aided Diagnosis en
dc.subject Focal liver lesions en
dc.subject Medical image interpretation en
dc.subject.classification Instruments & Instrumentation en
dc.subject.classification Nuclear Science & Technology en
dc.subject.classification Physics, Particles & Fields en
dc.subject.classification Spectroscopy en
dc.subject.other Artificial intelligence en
dc.subject.other Feature extraction en
dc.subject.other Fuzzy sets en
dc.subject.other Genetic algorithms en
dc.subject.other Medical imaging en
dc.subject.other ANalysis of VAriance (ANOVA) en
dc.subject.other Atherosclerosis en
dc.subject.other Focal liver lesions en
dc.subject.other Medical image interpretation en
dc.subject.other Computer aided diagnosis en
dc.title Computer aided diagnosis based on medical image processing and artificial intelligence methods en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.nima.2006.08.134 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.nima.2006.08.134 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atherotnatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84%, were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment en
dc.identifier.doi 10.1016/j.nima.2006.08.134 en
dc.identifier.isi ISI:000243241300096 en
dc.identifier.volume 569 en
dc.identifier.issue 2 SPEC. ISS. en
dc.identifier.spage 591 en
dc.identifier.epage 595 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής