HEAL DSpace

Computer aided diagnosis of CT focal liver lesions based on texture features, feature selection and ensembles of classifiers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SG en
dc.contributor.author Valavanis, IK en
dc.contributor.author Nikita, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:23:43Z
dc.date.available 2014-03-01T01:23:43Z
dc.date.issued 2006 en
dc.identifier.issn 15715736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17117
dc.subject Computed Tomography en
dc.subject Computer Aided Diagnosis en
dc.subject Ensemble of Classifiers en
dc.subject Feature Selection en
dc.subject K Nearest Neighbor en
dc.subject Texture Features en
dc.subject Neural Network en
dc.subject Region of Interest en
dc.title Computer aided diagnosis of CT focal liver lesions based on texture features, feature selection and ensembles of classifiers en
heal.type journalArticle en
heal.identifier.primary 10.1007/0-387-34224-9_83 en
heal.identifier.secondary http://dx.doi.org/10.1007/0-387-34224-9_83 en
heal.publicationDate 2006 en
heal.abstract A computer aided diagnosis system aiming to classify liver tissue from computed tomography images is presented. For each region of interest five distinct sets of texture features were extracted. Two different ensembles of classifiers were constructed and compared. The first one consists of five Neural Networks (NNs), each using as input either one of the computed texture feature sets or its reduced version after feature selection. The second ensemble of classifiers was generated by combining five different type of primary classifiers, two NNs, and three k-nearest neighbor classifiers. The primary classifiers of the second ensemble used identical input vectors, which resulted from the combination of the five texture feature sets, either directly or after proper feature selection. The decision of each ensemble of classifiers was extracted by applying voting schemes. © 2006 International Federation for Information Processing. en
heal.journalName IFIP International Federation for Information Processing en
dc.identifier.doi 10.1007/0-387-34224-9_83 en
dc.identifier.volume 204 en
dc.identifier.spage 705 en
dc.identifier.epage 712 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής