HEAL DSpace

Discretization methods for optimal control problems with state constraints

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.contributor.author Coletsos, I en
dc.contributor.author Kokkinis, B en
dc.date.accessioned 2014-03-01T01:24:00Z
dc.date.available 2014-03-01T01:24:00Z
dc.date.issued 2006 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17163
dc.subject Discretization en
dc.subject Midpoint scheme en
dc.subject Optimal control en
dc.subject Penalized gradient projection method en
dc.subject Piecewise linear controls en
dc.subject Relaxed controls en
dc.subject.classification Mathematics, Applied en
dc.subject.other Approximation theory en
dc.subject.other Constraint theory en
dc.subject.other Discrete time control systems en
dc.subject.other Numerical analysis en
dc.subject.other Optimal control systems en
dc.subject.other Optimization en
dc.subject.other Midpoint scheme en
dc.subject.other Optimal control en
dc.subject.other Piecewise linear controls en
dc.subject.other Relaxed controls en
dc.subject.other Problem solving en
dc.title Discretization methods for optimal control problems with state constraints en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cam.2005.04.020 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cam.2005.04.020 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We consider an optimal control problem described by nonlinear ordinary differential equations, with control and state constraints, including pointwise state constraints. Since this problem may have no classical solutions, it is also formulated in relaxed form. The classical control problem is then discretized by using the implicit midpoint scheme, while the controls are approximated by (not necessarily continuous) piecewise linear classical controls. We first study the behavior in the limit of properties of discrete optimality, and of discrete admissibility and extremality. We then apply a penalized gradient projection method to each discrete classical problem, and also a corresponding progressively refining combined discretization-optimization method to the continuous classical problem, thus reducing computing time and memory. We prove that accumulation points of sequences generated by these methods are admissible and extremal in some sense for the corresponding discrete or continuous, classical or relaxed, problem. For nonconvex problems whose solutions are nonclassical, we show that we can apply the above methods to the problem formulated in Gamkrelidze relaxed form. Finally, numerical examples are given. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/j.cam.2005.04.020 en
dc.identifier.isi ISI:000236439800001 en
dc.identifier.volume 191 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 31 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής