HEAL DSpace

Discretization methods for semilinear parabolic optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:24:01Z
dc.date.available 2014-03-01T01:24:01Z
dc.date.issued 2006 en
dc.identifier.issn 1705-5105 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17164
dc.relation.uri http://www.math.ualberta.ca/ijnam/Volume-3-2006/No-4-06/2006-04-04.pdf en
dc.subject optimal control en
dc.subject parabolic systems en
dc.subject discretization en
dc.subject piecewise bilinear controls en
dc.subject penalized gradient projection method en
dc.subject relaxed controls en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other NONCONVEX VARIATIONAL-PROBLEMS en
dc.subject.other APPROXIMATION en
dc.title Discretization methods for semilinear parabolic optimal control problems en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We consider an optimal control problem described by semilinear parabolic partial differential equations, with control and state constraints. Since this problem may have no classical solutions, it is also formulated in the relaxed form. The classical control problem is then discretized by using a finite element method in space and the implicit Crank-Nicolson midpoint scheme in time, while the controls are approximated by classical controls that are bilinear on pairs of blocks. We prove that strong accumulation points in L-2 of sequences of optimal (resp. admissible and extremal) discrete controls are optimal (resp. admissible and weakly extremal classical) for the continuous classical problem, and that relaxed accumulation points of sequences of optimal (resp. admissible and extremal relaxed) discrete controls are optimal (resp. admissible and weakly extremal relaxed) for the continuous relaxed problem. We then apply a penalized gradient projection method to each discrete problem, and also a progressively refining version of the discrete method to the continuous classical problem. Under appropriate assumptions, we prove that accumulation points of sequences generated by the first method are admissible and extremal for the discrete problem, and that strong classical (resp. relaxed) accumulation points of sequences of discrete controls generated by the second method are admissible and weakly extremal classical (resp. relaxed) for the continuous classical (resp. relaxed) problem. For nonconvex problems whose solutions are non-classical, we show that we can apply the above methods to the problem formulated in Camkrelidze relaxed form. Finally, numerical examples are given. en
heal.publisher ISCI-INSTITUTE SCIENTIFIC COMPUTING & INFORMATION en
heal.journalName INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING en
dc.identifier.isi ISI:000241069500004 en
dc.identifier.volume 3 en
dc.identifier.issue 4 en
dc.identifier.spage 437 en
dc.identifier.epage 458 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής